ORIENTATION OF ABSOLUTE SPACE S^{n}

Vladimir Janković

Abstract

We consider one way of founding the orientation of absolute space S^{n}. Briefly, we show how the orientation can be introduced by using the first two groups of axioms: axioms of incidence and axioms of order. In [1] the orientation of E^{2} is found in a similar way, but using an analytical method which needs all five groups of axioms.

1. Oriented Simplexes and Chaias

An oriented simplex is a simplex whose vertices are ordered. We shall consider only oriented simplexes and for the sake of simplicity we shall call them simplexes. By the simplex $A_{0} A_{1} \ldots A_{n}$ we shall mean the simplex whose first vertex is A_{0}, whose second vertex is A_{1} and so on.

Simplexes $A_{0} A_{1} \ldots A^{n}$ and $B_{0} B_{1} \ldots B_{n}$ are connected if $A_{i}=B_{i-1}, i=$ $1, \ldots, n$. A chain is a finite sequence of simplexes such that any two consecutive members are connected. A chain is closed if its initial and terminal members coincide. By the chain $A_{0} A_{1} \ldots A^{n},(m>n)$ we shall mean the sequence of simplexes $A_{i} A_{i+1} \ldots A_{i+n}, i=0,1, \ldots, m-n$. By the closed chain $A_{0} A_{1} \ldots A^{n}(m>n)$ we shall mean the sequence of simplexes $A_{i} A_{i+1} \ldots A_{i+n} i=0,1, \ldots, m$, where $A_{m+j}=A_{j}$ for $j=0,1, \ldots, n$. Chain C connects simplex S with simplex S^{\prime} if it starts at S and if it terminates at \mathbf{S}^{\prime}.

Theorem 1. For any two simplexes S and S^{\prime} there exists a chain which connects S with S^{\prime}.

Proof. Let $S=A_{0} A_{1} \ldots A^{n}$ and $S^{\prime}=B_{0} B_{1} \ldots B^{n}$. Furthermore,

- let C_{1} be a point which doesn't lie on the hyperplane $A_{0} A_{1} \ldots A^{n}$, and which is distinct from the point B_{0};
- let C_{2} be a point which doesn't lie on the hyperplane $A_{1} A_{2} \ldots A^{n} C_{1}$, and which doesn't lie on the lines $C_{1} B_{0}$ and $B_{0} B_{1}$;
- let C_{3} be a point which doesn't lie on the hyperplane $A_{3} A_{4} \ldots A^{n} C_{1} C_{2}$, and which doesn't lie on the planes $C_{1} C_{2} B_{0}, C_{2} B_{0} B_{1}$ and $B_{0} B_{1} B_{2} ; \ldots$

[^0]- let C_{n} be a point which doesn't lie. on the hyperplanes $A_{n} C_{1} \ldots C_{n-1}$, $C_{1} C_{2} \ldots, C_{n-1} B_{0}, \ldots C_{n-1} B_{0} \ldots B_{n-2}$ and $B_{0} B_{1} \ldots B_{n-1}$. It is obvious that the chain $C=A_{0} A_{1} \ldots A_{n} C_{1} \ldots C_{n} B_{0} B_{1} \ldots B_{n}$ connects the simplex S with the simplex S^{\prime}.

2. Parity of Chains

A couple of connected simplexes $A_{0} A_{1} \ldots A_{n}$ and $A_{1} \ldots A_{n} A_{n+1}$ is antioriented if the vertices A_{0} and A_{n+1} lie on the same side of the hyperplane determined by the common side $A_{1} \ldots A_{n}$ for n odd, and if the vertices A_{0} and A_{n+1} lie on the opposite sides of the hyperplane determined by the common side $A_{1} \ldots A_{n}$ for n even. A parity of a chain is the parity of the number of anti-oriented couples of consecutive members of that chain.

Theorem 2. Closed chains are even.
Proof for $n=1$. Suppose that the closed chain $A_{0} A_{1} \ldots A_{m-1}$ is given. The points $A_{0}, A_{1}, \ldots, A_{m-1}$ can be enumerated by the intogers $a_{0}, a_{1}, \ldots, a_{m-1}$ such that $\left(a_{i}-a_{j}\right)\left(a_{j}-a_{k}\right)>0$ if and only if A_{j} lies between A_{i} and A_{k}. The couple of segments $A_{i} A_{i+1}$ and $A_{i+1} A_{i+2}$ is anti-oriented if and only if $\left(a_{i}-a_{i+1}\right)\left(a_{i+1}-\right.$ $\left.a_{i+2}\right)<0$. Since

$$
\prod_{i=1}^{m-1}\left(a_{i}-a_{i+1}\right)\left(a_{i+1}-a_{i+2}\right)=\prod_{i=1}^{m-1}\left(a i-a_{i+1}\right)^{2}>0
$$

the number of anti-oriented couples of consecutive members of the given chain is even, i.e. the given chain is even.

Let H be a hyperplane and let A and B be two points which don't lie on H. Let us define $a(A, H, B)$ and $b(A, H, B)$ as

$$
\begin{aligned}
& a(A, H, B)=\left\{\begin{array}{rr}
1, & A, B \cdots H \\
-1, & A, B \div H
\end{array}\right. \\
& b(A, H, B)=\left\{\begin{array}{rr}
1, & A, B \div H \\
-1, & A, B \cdots H
\end{array}\right.
\end{aligned}
$$

These two functions have the following two properties:
a) If points A, B and C don't lie on the hyperplane H, then

$$
\begin{aligned}
& a(A, H, B) a(B, H, C) a(C, H, A)=1 \\
& b(A, H, B) b(B, H, C) b(C, H, A)=-1
\end{aligned}
$$

b) If three points A, B and C and the plane P of codimension 2 determine three distinct hyperplanes, then

$$
\begin{aligned}
& a(A, B P, C) a(B, C P, A) a(C, A P, B)=-1 \\
& b(A, B P, C) b(B, C P, A) b(C, A P, B)=1
\end{aligned}
$$

Lemma. Let $A_{0}, A_{1}, \ldots, A_{m}$ be points in $S^{n}(n>1)$. Then there exist points $A_{0}^{\prime}, A_{1}^{\prime}, \ldots, A_{m}^{\prime}$ in S^{n} such that no $n+1$ of them lie on one hyperplane and such that

$$
\begin{equation*}
B\left(A_{i}^{\prime}, A_{k_{1}}^{\prime}, A_{k_{2}}^{\prime}, \ldots, A_{k_{n}}^{\prime}, A_{j}^{\prime}\right) \Leftrightarrow B\left(A_{i}, A_{k_{1}}, A_{k_{2}}, \ldots, A_{k_{n}}, A_{j}\right) \tag{*}
\end{equation*}
$$

provided the points, $A_{k_{1}}, A_{k_{2}}, \ldots, A_{k_{n}}$ determine a unique hyperplane and the points A_{i} and A_{j} don't lie on that hyperplane.

Proof. Let l_{0} be a line passing through A_{0} which doesn't lie on any hyperplane determined by n points among $A_{0}, A_{1}, \ldots, A_{m}$. Let A_{0}^{\prime} be a point lying on l_{0} such that the segment $\left.] A_{0}, A_{0}^{\prime}\right]$ doesn't have a common point with any considered hyperplane. The points $A_{0}^{\prime}, A_{1}, \ldots, A_{m}$ satisfy the given condition. If $i=0$, the condition ($*$) is satisfied because, according to the property a) of the function b,

$$
b\left(A_{0}^{\prime}, A_{k_{1}} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right)=-b\left(A_{0}^{\prime}, A_{k_{1}} A_{k_{2}} \ldots A_{k_{n}}, A_{0}\right) b\left(A_{0}, A_{k_{1}} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right)
$$

and, according to the way point A_{0}^{\prime} is chosen,

$$
b\left(A_{0}^{\prime}, A_{k_{1}} A_{k_{2}} \ldots A_{k_{n}}, A_{0}\right)=-1
$$

The case $j=0$ can be considered in the same way. If $k_{1}=0$, the condition $(*)$ is satisfied, because, according to the property b) of the function b,

$$
\begin{aligned}
& b\left(A_{i}, A_{0}^{\prime} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right)=b\left(A_{0}^{\prime}, A_{i} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right) b\left(A_{i}, A_{j} A_{k_{2}} \ldots A_{k_{n}}, A_{0}^{\prime}\right) \\
& b\left(A_{i} A_{0} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right)=b\left(A_{0}, A_{i} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right) b\left(A_{i}, A_{j} A_{k_{2}} \ldots A_{k_{n}}, A_{0}\right)
\end{aligned}
$$

and the equalities

$$
\begin{aligned}
& b\left(A_{0}^{\prime}, A_{i} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right)=b\left(A_{0}, A_{i} A_{k_{2}} \ldots A_{k_{n}}, A_{j}\right) \\
& b\left(A_{i}, A_{j} A_{k_{2}} \ldots A_{k_{n}}, A_{0}^{\prime}\right)=b\left(A_{i}, A_{j} A_{k_{2}} \ldots A_{k_{n}}, A_{0}\right)
\end{aligned}
$$

have been already proved. The cases $k_{2}=0, \ldots, k_{n}=0$ can be considered in the same way.

Repeating the same procedure with the points A_{1}, \ldots, A_{m}, we shall get the points $A_{0}^{\prime}, A_{1}^{\prime}, \ldots, A_{m}^{\prime}$ which satisfy all of the needed conditions.

Proof of Theorem 2 for odd $n>1$. The closed chain $A_{0} A_{1} \ldots A_{m-1}$ is even if and only if -1 occurs an even number of times among the numbers $b\left(A i, A_{i+1} A_{i+2} \ldots A_{i+n}, A_{i+n+1}\right), i=0,1, \ldots, m-1$, i.e., if and only if

$$
\prod_{i=0}^{m-1} b\left(A_{i}, A_{i+1} A_{i+2} \ldots A_{i+n}, A_{i+n+1}\right)=1
$$

We shall prove our statement by induction on m.
For $m=n+1$ the statement is valid, because all of the numbers $b\left(A_{i}, A_{i+1}\right.$ $\left.A_{i+2} \ldots A_{i+n}, A_{i+n+1}\right)$ are equal to -1 and m is even.

Let us suppose that the statement is valid for integer $m>n$. Suppose that the closed chain $A_{0} A_{1} \ldots A_{m}$, is given. By the previous lemma, we can suppose
that no $n+1$ among the points $A_{0}, A_{1}, \ldots, A_{m}$ belong to one hyperplane. By the induction hypothesis, the statement is valid for the closed chain $A_{0} A_{1} \ldots, A_{m-1}$, and therefore $P=1$, where

$$
\begin{aligned}
P & =\left(\prod_{i=0}^{m-n-2} b\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot b\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{0}\right) . \\
& \cdot \prod_{j=0}^{n-1} b\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right) .
\end{aligned}
$$

It remains to show that $Q=1$, where

$$
\begin{aligned}
Q & =\left(\prod_{i=0}^{m-n-2} b\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot b\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{m}\right) \\
& \cdot\left(\prod_{j=0}^{n-1} b\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m} A_{0} \ldots A_{j-1}, A_{j}\right)\right) \cdot b\left(A_{m}, A_{0} \ldots A_{n-1}, A_{n}\right)
\end{aligned}
$$

Using the properties b) and a) of the function b we get

$$
\begin{aligned}
Q & =\left(\prod_{i=0}^{m-n-2} b\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot b\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{m}\right) \\
& \cdot \prod_{j=0}^{n-1}\left[b\left(A_{m}, A_{m-n+j} \ldots A_{m-1} A_{0} \ldots A_{j-1}, A_{j}\right) \cdot\right. \\
& \left.\cdot b\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{m}\right)\right] \cdot b\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{m}\right), \\
Q & =\left(\prod_{i=0}^{m-n-2} b\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot b\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{m}\right) \\
& \cdot b\left(A_{m}, A_{m-n} \ldots A_{m-1} A_{0}\right) \cdot \prod_{j=0}^{n-1}\left[b\left(A_{m}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right) .\right. \\
& \left.\cdot b\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{m}\right)\right] \\
Q & =\left(\prod_{i=0}^{m-n-2} b\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot\left(-b\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{0}\right)\right) \cdot \\
& \cdot \prod_{j=0}^{n-1}\left(-b\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right)\right), \\
Q & =\left(\prod_{i=0}^{m-n-2} b\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot b\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{0}\right) . \\
& \cdot \prod_{j=0}^{n-1} b\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right), \\
& Q=P=1 . \square
\end{aligned}
$$

Proof of Theorem 2 for n even. The closed chain $A_{0} A_{1} \ldots A_{m-1}$ is even if and only if -1 occurs an even number of times among the numbers $a\left(A_{i}, A_{i+1} A_{i+2} \ldots\right.$ $\left.A_{i+n}, A_{i+n+1}\right), i=0,1, \ldots, m-1$, i.e., if and only if

$$
\prod_{i=0}^{m-1} a\left(A_{i}, A_{i+1} A_{i+2} \ldots A_{i+n}, A_{i+n+1}\right)=1
$$

We shall prove our statement by induction on m.
For $m=n+1$ the statement is valid, because all of the numbers $a\left(A_{i}, A_{i+1}\right.$ $\left.A_{i+2} \ldots A_{i+n}, A_{i+n+1}\right)$ are equal to 1 .

Let us suppose that the statement is valid for integer $m>n$. Suppose that the closed chain $A_{0} A_{1} \ldots A_{m}$ is given. By the previous lemma, we can suppose that no $n+1$ among the points $A_{0}, A_{1}, \ldots, A_{m}$ belong to one hyperplane. By the induction hypothesis, the statement is valid for the closed chain $A_{0} A_{1} \ldots A_{m-1}$, and therefore $P=1$, where

$$
\begin{aligned}
P & =\left(\prod_{i=0}^{m-n-2} a\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot a\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{0}\right) \\
& \cdot \prod_{j=0}^{n-1} a\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right)
\end{aligned}
$$

It remains to show that $Q=1$, where

$$
\begin{aligned}
& Q=\left(\prod_{i=0}^{m-n-2} a\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot a\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{0}\right) \\
& \cdot\left(\prod_{j=0}^{n-1} a\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right)\right) \cdot a\left(A_{m}, A_{0} \ldots A_{n-1}, A_{n}\right)
\end{aligned}
$$

Using the properties b) and a) of the function a we get

$$
\begin{aligned}
Q & =\left(\prod_{i=0}^{m-n-2} a\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot a\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{m}\right) \\
& \cdot\left(\prod _ { j = 0 } ^ { n - 1 } \left[-a\left(A_{m}, A_{m-n+j} \ldots A_{m-1} A_{0} \ldots A_{j-1}, A_{j}\right)\right.\right. \\
& \left.\left.\cdot a\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{m}\right)\right]\right) \cdot a\left(A_{m}, A_{0} \ldots A_{n-1}, A_{n}\right) \\
Q & =\left(\prod_{i=0}^{m-n-2} a\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot a\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{m}\right) \\
& \cdot a\left(A_{m}, A_{m-n} \ldots A_{m-1} A_{0}\right) \cdot \prod_{j=0}^{n-1}\left[a\left(A_{m}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right)\right. \\
& \left.\cdot a\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{m}\right)\right]
\end{aligned}
$$

$$
\begin{gathered}
Q=\left(\prod_{i=0}^{m-n-2} a\left(A_{i}, A_{i+1} \ldots A_{i+n}, A_{i+n+1}\right)\right) \cdot a\left(A_{m-n-1}, A_{m-n} \ldots A_{m-1}, A_{0}\right) \\
\cdot \prod_{j=0}^{n-1} a\left(A_{m-n+j}, A_{m-n+j+1} \ldots A_{m-1} A_{0} \ldots A_{j}, A_{j+1}\right) \\
Q=P=1 .
\end{gathered}
$$

Theorem 3. If the chains C and C^{\prime} have the same origin and the same end, they have the same purity.

Proof. Let $C^{\prime \prime}$ be a chain which connects the common end of C and C^{\prime} with their common origin. If we extend C by $C^{\prime \prime}$ we get a closed chain. We thus conclude that the total number of anti-oriented couples of consecutive members of C and $C^{\prime \prime}$ is even. Therefore C and $C^{\prime \prime}$ have the same parity. In the same way we conclude that C^{\prime} and $C^{\prime \prime}$ have the same parity. It follows that C and C^{\prime} have the same parity.

3. Orientations

Simplex S has the same orientation as simplex S^{\prime}, or briefly $S \rightrightarrows S^{\prime}$, if each chain which connects them is even. Simplex S has the opposite orientation to simplex S^{\prime}, or briefly $S \rightleftarrows S^{\prime}$, if each chain which connects them is odd.

Theorem 4. Relation \rightrightarrows is an equivalence relation which defines the partition of the family of simplexes into two equivalence classes.

Proof. This relation is reflexive because each closed chain is even.
Let $S \rightrightarrows S^{\prime}$ and $S^{\prime} \rightrightarrows S^{\prime \prime}$. Let C be a chain which connects S^{\prime} with $S^{\prime \prime}$, and let $C^{\prime \prime}$ be the chain which is the extension of C by $C^{\prime \prime}$. The chain $C^{\prime \prime}$ is even, because chains C and C^{\prime} are even. Therefore $S \rightrightarrows S^{\prime \prime}$. We conclude that the relation \rightrightarrows is transitive.

Let $S \rightrightarrows S^{\prime}$. Let C be a chain which connects S with S^{\prime}, let C^{\prime} be a chain which connects S^{\prime} with S, and let $C^{\prime \prime}$ be the chain which is the extension of C by C^{\prime}. Chain C^{\prime} is even, because chains C and $C^{\prime \prime}$ are even. Therefore $S^{\prime} \rightrightarrows S$. We conclude that the relation \rightrightarrows is symmetric.

Let $S \rightleftarrows S^{\prime}$ and $S^{\prime} \rightleftarrows S$. Let C be a chain which connects S with S^{\prime}, let C^{\prime} be a chain which connects S^{\prime} with S, and let $C^{\prime \prime}$ be the extension of C by C^{\prime}. The chain $C^{\prime \prime}$ is even, because chains C and $C^{\prime \prime}$ are odd. Therefore $S \rightrightarrows S^{\prime \prime}$.

An orientation of n-dimensional absolute space S^{n} is any equivalence class with respect to the relation \rightrightarrows. There are two opposite orientations of space S^{n}.

Theorem 5. Let p be a permutation of numbers $0,1, \ldots, n$. Simplex $A_{p_{0}} A_{p_{1}} \ldots A_{p_{n}}$ has the same orientation as simplex $A_{0} A_{1} \ldots A_{n}$ if and only if the permutation p is even.

Proof. First, let us prove that the statement is valid for the transposition $(0,1)$. Let A be any inner point of the $n-1$-dimensional simplex $A 1 \ldots A_{n}$. Let us consider the chain $A_{1} A_{0} A_{2} \ldots A_{n} A A_{0} A_{1} \ldots A_{n}$ which connects the simplex $A_{1} A_{0} A_{2} \ldots A_{n}$ with the simplex $A_{0} A_{1} \ldots A_{n}$. The number of anti-oriented couples of consecutive members of this chain is 3 if n is odd, and it is $n-1$ if n is even. Therefore, this chain is odd, and so the simplex $A_{1} A_{0} A_{2} \ldots A_{n}$ has the opposite orientation to the simplex $A_{0} A_{1} \ldots A_{n}$.

Now, let us prove that the statement is valid for the cyclic permutation $(0,1, \ldots, n)$. It has the same parity as n. Let us consider the chain $A_{1} A_{2} \ldots A_{n} A_{0}$ $A_{1} \ldots A_{n}$ which connects the simplex $A_{1} \ldots A_{n} A_{0}$ with the simplex $A_{0} A_{1} \ldots A_{n}$. The number of anti-oriented couples of consecutive members of this chain is 0 if n is even, and it is n for n odd. Therefore, this chain has the same parity as n. So, the simplex $A_{1} \ldots A_{n} A_{0}$ has the same orientation as the simplex $A_{0} A_{1} \ldots A_{n}$ if and only if the cyclic permutation $(0,1, \ldots, n)$ is even.

Finally, let us prove that if the statement is valid for permutations p and q, then it is valid for their composition $q p$. Let S be an arbitrary simplex, let S^{\prime} be the simplex obtained from S by reordering its vertices by the permutation p, and let $S^{\prime \prime}$ be the simplex obtained from S^{\prime} by reordering its vertices by the permutation q. Simplex $S^{\prime \prime}$ arises from simplex S by reordering its vertices by the permutation $q p$. We shall consider four cases:

1. If the permutations p and q are even, the permutation $q p$ is even. From $S \rightrightarrows S^{\prime}$ and $S^{\prime} \rightrightarrows S^{\prime \prime}$ it follows that $S \rightrightarrows S^{\prime \prime}$.
2. If the permutation p is even and if the permutation q is odd the permutation $q p$ is odd. From $S \rightrightarrows S^{\prime}$ and $S^{\prime} \rightleftarrows S^{\prime \prime}$ it follows that $S \rightleftarrows S^{\prime \prime}$.
3. If the permutation p is odd and if the permutation q is even, the permutation $q p$ is odd. From $S \rightleftarrows S^{\prime}$ and $S^{\prime} \rightleftarrows S^{\prime \prime}$ it follows that $S \rightleftarrows S^{\prime \prime}$.
4. If the permutations p and q are odd, the permutation $q p$ is even. From $S \rightleftarrows S^{\prime}$ and $S^{\prime} \rightleftarrows S^{\prime \prime}$ it follows that $S \rightrightarrows S^{\prime \prime}$.

It remains to remark that the transposition $(0,1)$ and the cyclic permutation $(0,1, \ldots, n)$ generate all permutations of numbers $0,1, \ldots, n)$.

REFERENCES

[1] P.S. Modenov, A.S. Parkhomenko, Geometric Transformations, Vol. 1, Academic Press, New York, 1965.

[^0]: AMS Subject Classification (1980): Primary 51G05

