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ASYMPTOTIC BEHAVIOUR OF FOURIER

TRANSFORMS IN Rn

Tatjana Ostrogorski

Abstract. If a function de�ned on a cone in the n-dimensional Euclidean space Rn is
regularly varying at zero, then its Fourier transform is regularly varying at in�nity.

1. Introduction. The following one-dimensional theorem is well known (see
[1] and [2]). Let the function f be integrable and even or odd on the real line and
let its Fourier transform, de�ned by

bf(t) =
1Z
0

f(x) cos txdx or bf(t) =
1Z
0

f(x) sin txdx

be monotone decreasing. Then for 0 < � < 1 we have

f(x) � x��L(1=x); x! 0() bf(t) � C�t
��1L(t); t!1

where L is a slowly varying function and C� is a constant.

We shall prove that an analogous statement holds in n dimensions.

The set � � Rn is a cone if x 2 � implies �x 2 �, for every � > 0. We shall
always assume that � is closed, convex, and that it has a nonempty interior. The
dual cone of the cone � is de�ned by �� = fx 2 Rn : x � y � 0;8y 2 �g. We shall
also assume that int �� is nonempty. For these de�nitions see [5], [6] or [4].

In the present paper we deal with the Fourier transforms of regularly varying
functions.

The Fourier transform of a function F which is Lebesgue integrable on � is
de�ned by

(1) bF (x) = Z
�

F (t)eix�tdt:
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The real part and the imaginary part of this integral are called the cosine and
sine transform respectively

bFc(x) =
Z
�

F (t) cosx � tdt bFs(x) =
Z
�

F (t) sinx � tdt:

We shall consider cosine transforms only, the results about sine transforms

being similar, and we shall also write bF instead od bFc.
Regularly varying functions in several variables were de�ned by Yakymiv [7],

who generalized the well known de�nition of Karamata. Here we shall give a variant
of this de�nition and we refer the reader to [7] and [4] for more detail and for some
properties of regularly varying functions.

Let r : R+ ! R+ denote a regularly varying function in one variable (i.e.
lim
�!1

r(��)=r(�) = ��, for some � 2 R, called the index of r, and for every � > 0).

Let � be a cone in Rn. A measurable function R : �! R+ is said to be regularly
varying (at in�nity) if there is a regularly varying function in one variable r and a
function ' : �! R+ such that

(2) lim
�!1

R(�x)

r(�)
= '(x)

uniformly in x 2 B, for all compact sets B � � n f0g.

We shall always write R for a regularly varying function and r and ' for
the functions that correspond to R as in (2). The function ' is continuous and
homogeneous of order �, i.e. '(�x) = ��'(x), for all � > 0 and x 2 �, where � is
the index of r.

A measurable function R : � ! R+ is regularly varying at zero (with index
�) if the limit

lim
�!1

R(x=�)

r(�)
= '(x)

exists uniformly in x 2 B, for every compact set B � � n f0g.

The characteristic function of � will be denoted by �� (or simply �). If F is
a function de�ned on �, its convolution with � is called the primitive of F (with
respect to �) and is denoted by I�F (x) = F � �(x) =

R
�\x��

F (t)dt.

If � and G are two cones, we shall say that G is smaller than �, or that � is
larger than G, if G � int � (recall that all cones are assumed to be closed).

Now we can state the main theorem of the paper.

Theorem 1. Let 0 < � < n. Let R be integrable on a cone �, and regularly
varying at zero with index �, i.e. let

(3) lim
�!1

R(u=�)

r(�)
= '(u); u 2 �
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uniformly in compact sets from �nf0g. If the cosine Fourier transform R is positive
in a cone G� which is smaller than ��, then

(4) lim
�!1

IG�
bR(�x)
r(�)

= IG� b'(�x); x 2 G�;

uniformly in compact sets in G� n f0g, i.e. the primitive of the Fourier transform
is regularly varying at in�nity in G� with index �.

Observe that for homogeneous functions ' the Fourier transform b' cannot
be de�ned by formula (1), since no homogeneous function is integrable on �. We
deal with this problem in Section 2. In Section 3 we shall prove Theorem 1. In

Section 4 we obtain the asymptotic behavior of the function bR, under the additional
assumption that it is monotone. In Section.5 we consider the dual case when the
function R itself (and not) its Fourier transform is monotone. Theorem 2 shows
that in this case too we have an analogue of Theorem 1. The combination of these
two theorems gives in the one dimensional case the theorem of Aljan�ci�c, Bojani�c
and Tomi�c we mentioned at the beginning. However, in the n-dimensional case we
cannot expect a statement of the \if and only if" type, since for a function de�ned
on a cone we obtain the asymptotic behavior of its Fourier transform on the dual
cone only, and have no information about its behavior on the rest of Rn.

In the one-dimensional case it happens that the Fourier transform is supported
by the dual cone; for example, the Fourier transform of an even function is even.
A certain analogy with this case could be obtained in the n-dimensional space if
we consider cones � that are contained an even number of times in Rn (i.e., the
union of translations of � is equal to Rn). An example of such a cone is R+. We
can extend a function supported in � to the whole space Rn by continuing it in an
\even" or \odd" way. The dual cone �� is also contained an even number of times
in Rn, and the Fourier transform of f is also \even" or \odd" in Rn. In this case,

the values of bf in Rn are determined by the values of bf in ��, and bf and f are
interchangeable.

2. Fourier transforms of homogeneous functions. In this section we
shall compute the Fourier transform of homogeneous functions. We shall assume
that the homogeneous function ' de�ned on a cone � is continuous, and that
0 < C1 < '(x0) < C2 for some constants C1 and C2 and all x0 = x=jxj from the
intersection of � with the unit sphere � � Rn. In other words, ' is like the function
appearing in (2).

Let � be a cone in Rn. The tube domain T� with base � is the set of all
z = x+ iy 2 Cn (the n-dimensional complex Euclidean space) such that y 2 int �.
The Laplace transform of a measurable function F on � is de�ned by

(5) LF (z) =

Z
�

F (t)eiz�tdt =

Z
�

F (t)e�y�teix�tdt; z 2 T��

;

(it is the Fourier transform of the function F (y)e�y�t); see [5] or [6].
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It was proved in [6] that when the function F is a temperate distribution
(= locally integrable in � and of polynomial growth in in�nity) the Laplace trans-

form LF (z) is analytic in T��

. For z = x 2 Rn (y = 0) the Laplace transform
(5) reduces to the Fourier transform. The problem is that the tube domain T��

in
which LF is de�ned does not contain Rn. However, if ' is homogeneous, L' has
an analytic continuation in a domain containing the cone int �� � Rn. This will be
proved in Proposition 1 and after that the Fourier transform b'(x) will be de�ned
as L'(x), for x 2 int ��.

Proposition 1. Let � > �n. Let ' : � ! R+ be continuous and homoge-
neous of order �. Then

a) the following representation holds

(6) L'(z) = I�+n�(�+ n)1)
Z

�\�

'(t0)

(z � t0)�+n
dt0; z 2 T��

b) L'(z) has an analytic continuation in the domain

D = Cn n
[

�2�\�

fz : z � � = 0g:

Proof. Since � > �n, the function ' is locally integrable in � and thus, by a
remark above, L'(z) is analytic in T��

. On the other hand, z 2 T��

, t0 2 � \ �
implies y �t0 > 0; consequently, z �t0 = x �t0+iy �t0 is never zero, and thus the integral
on the right-hand side of (6) is also an analytic function in T��

. Therefore, to prove
(6) it is suÆcient to prove that this equality holds for z = iy, y 2 int �� (i.e. for
x = 0). But for x = 0, by introducing the polar coordinates r = jtj, t0 = t=jtj in
the integral de�ning L', we have

L'(iy) =

Z
�

'(t)e�y�tdt =

Z
�\�

dt0
1Z
0

'(rt0)e�r(y�t
0)rn�1dr

=

Z
�\�

'(t0)dt0

(y � t0)�+n

1Z
0

r�+n�1e�rdr = i�+n�(�+ n)

Z
�\�

'(t0)dt0

(iy � t0)�+n

which proves part a).

b) It is easily seen that the integral
R

�\�

'(t0)=(z � t0)dt0 is indeed analytic in

D (which is larger than T��

). This follows from the fact that the denominator z � t0

is never zero in D. This completes the proof of the proposition.

1)Here � denotes, of course, the gamma function (de�ned by �(�) =
1R

0

e
�t

t
��1

dt) which

has nothing in common with the cone �, except for the unfortunate collision of notation.
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Now we de�ne the Fourier transform of ' by

(7) b'(x) = L'(x) = i�+n
Z

�\�

'(t0)dt0

(iy � t0)�+n
; x 2 int ��

and Proposition 1 shows that b' is well de�ned, since int �� 2 D.

Observe that b' is homogeneous of order ��� n in int ��.

As a special case consider b' = ��� (on the cone ��). The Laplace transform
of ��� is called the Cauchy kernel of the cone �

(8) K�(z) = L���(z) =

Z
�

eiz�tdt; z 2 T�:

Formula (6) applied to this function yields

(9) K�(z) = in�(n)

Z
�\��

dt0

(z � t0)n
; z 2 T�:

This was proved in [6], and Proposition 1 is an fact a simple generalization of this
special case.

On the other hand, if we take '(t) = jtj� and � = R+, formula (6) coincides
with a well known result:

b'(x) = jxj���n2�+n�((�+ n)=2)�(��=2)

(see [5]. This is easily seen if we use the fact thatZ
�

dt0jx0 � t0j�+n = 2�(n�1)=2�((��� n+ 1)=2)�(��=2) (see [3]):

Let us note some properties of the Cauchy kernel.

Lemma 1. Let K�(x + iy), x 2 Rn, y 2 � be the Cauchy kernel of the cone
�. Then

K�(�z) = ��nK�(z); z = x+ iy(i)

jK�(x+ iy)j � K�(iy); y 2 int �(ii)

jK�(x+ iy)j � K�(x); x 2 int �(iii)

jK�(x)j = inK�(ix); x 2 int �(iv)

jK�(x
0)j < C; x0 2 � \ �1;(v)

where �1 is smaller than �.

Proof. (i) Follows easily, by a change of variables in the integral de�ning the
Cauchy kernel (8)

K�(�z) =

Z
��

ei�z�tdt = ��n
Z
��

eiz�udu = K�(z):
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(ii) Also strightforward:

jK�(x+ iy)j =

�����
Z
��

e�y�teix�tdt

����� �
�����
Z
��

e�y�tdt

����� = K�(iy)

(iii) By formula (9) we have,

jK�(x+ iy)j = �(n)

�����
Z

�\��

dt0

(x � t0 + iy � t0)n

����� � �(n)

Z
�\��

dt0

jx � t0jn
:

Now, if x 2 �, then x � t0 > 0, so that from the preceding formula it follows that

jK�(x+ iy)j � �(n)

Z
�\��

dt0

(x � t0)n
= jK�(x)j; x 2 �;

where for the last equality we have again used (9), which is valid for x 2 � by
Proposition 1 b).

(iv) Follows by an application of (9) for x 2 �.

(v) Since x0 2 �\� and t0 2 �\�� imply that x0 �t0 � c > 0, from the representation
K�(x

0) = in�(n)
R

�\��

(x0 � t0)�ndt0 it follows that K�(x
0) is bounded by a constant.

3. Proof of the main theorem. In this section we shall prove Theorem 1.
Let us introduce one more de�nition.

The real part of the Cauchy kernel

(10) p�(x; y) = <K�(x+ iy) =

Z
��

e�y�t cosx � tdt; x 2 Rn; y 2 int �

is called the Poisson kernel of �. (We use this name because the kernel (10) will
play the same role as the Poisson kernel in R+, although usually ([6] or [7]) a
somewhat di�erent function is called the Poisson kernel of �.)

Let P� denote the operator with kernel p�

P� =

Z
��

F (x)p�(x; y)dx; y 2 int �

for functions F de�ned on �.

The proof of Theorem 1 is based on the following two theorems. Theorem A
[7] is a generalization to n dimensions of Karamata's Tauberian theorem for the
Laplace transform. Theorem B is an application of a theorem proved in [4] to the
operator P�. We shall obtain Theorem 1 by the following simple argument. If R is
regularly varying, then Theorem B implies that P�R is regularly varying. Then, by

an application of Parseval's equation we pass from P�R(x) to L� bR(ix) (see Lemma
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2). Finally, when we have the regular variation of the Laplace transform of bR, the
Tauberian Theorem A yields the regular variation of IG�

bR.
Theorem A [7]. Let � be a cone in Rn and let F be a positive function

de�ned on �. Let the Laplace transform LF (iy) be well de�ned for y 2 int �� and
let

lim
�!1

LF (iy=�)

r(�)
=  (y); y 2 int ��:

Then

lim
�!1

IF (�x)

r(�)
= '(y); x 2 int �;

uniformly in compact sets in G n f0g (where G is smaller than �),and L'(iy) =
 (y)K�(iy).

Theorem B. Let � be a cone in Rn and G a cone larger than �. Let pG(x; y)
be the Poisson kernel of G. Let 0 < � < n. Then

(i) pG(�x; �y) = ��npG(x; y); x 2 R
n; y 2 Ga)

(ii)

Z
�

max(jxj����; jxj����)jp�(x; y)jdx � KG(iy); y 2 G

for some � > 0.

b) Consider the operator PG with kernel pG on ��G

PGF (y) =

Z
�

F (x)pG(x; y)dx; y 2 G:

Let R be regularly varying at zero with index � in �. Then

lim
�!1

PGR(y=�)

r(�)
= PG'(y); y 2 intG:

Proof. It was proved in [4] (Corollary 4 of Theorem 1) that for an operator
whose kernel satis�es the conditions (i) and (ii) in a), the statement b) follows.
Therefore, we only have to prove a). Since by de�nition pG(x; y) = <KG(x + iy)
(i) follows by Lemma 1 (i).

To prove (ii) we split the integral into two partsZ
�

=

Z
jxj<1

+

Z
jxj>1

= I1 + I2

For the �rst integral we have

(11) I1 =

Z
jxj<1

jxj���� jpG(x; y)jdx < KG(iy)

Z
jxj<1

jxj����dx
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by Lemma 1 (ii). And the last integral in (11) converges if �� � � + n > 0, i.e.
� < n� �.

For the second integral I2 we have by Lemma 1 (iii)

(12) I2 =

Z
jxj>1

jxj��+� jpG(x; y)jdx <

Z
jxj>1

jxj��+� jKG(x)jdx

and by introducing the polar coordinates r = jxj and x0 = x=jxj in the last integral
we have

(13)

Z
jxj>1

jxj��+� jKG(x)jdx =

Z
�\�

dx0
1Z
1

r��+�+n�1jKG(rx
0)jdr

=

Z
jxj>1

jKG(x
0)jdx0

1Z
1

r��+��1dr

since KG is homogeneous of order �n, by Lemma 1 (i). Now by an application of

Lemma 1 (v) we see that
R

�\�

jKG(x
0)jdx < C, and on the other hand

1R
1

r��+��1dr

converges if ��+ � < O. Consequently, if we substitute (13) into (12) we see that
I2 is majorized by a constant, for � < �.

Now, if we choose 0 < � < min(�; n��), formulae (12) and (11) together give
(ii). This completes the proof of Theorem B.

The equality (14) in the following lemma (which is in fact Parseval's equality)
will give an important step in the proof of Theorem 1.

Lemma 2. Let R be de�ned on a cone � and satisfy the conditions of Theorem
1. Let PG be the Poisson operator for a cone G larger than � and let L be the
Laplace operator. Then

(14) PGR(y) = L bR(iy); y 2 intG:

Proof. We have

(15) PGR(y) =

Z
�

R(x)pG(x; y)dx:

By de�nition, the Poisson kernel pG(x; y) =
R
G�

e�y�t cosx � tdt is the cosine Fourier

transform of the function gy(t) which is equal to e�y�t, for t 2 G�, and is equal to
0, for any other t. Thus we have from (15) (since R is supported in �)

PGR(y) =

Z
Rn

R(x)bgy(x)dx; y 2 intG:
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We now apply the Parseval equality to the last integral and obtain

(16) PGR(y) =

Z
Rn

R(x)bgy(x)dx =

Z
Rn

bR(t)gy(t)dt =
Z
G�

bR(t)e�y�tdt;
since gy is supported in G�. But the last integral in (16) is by de�nitionZ

G�

bR(t)e�y�tdt = L bR(iy); y 2 intG:

From this and (16) equality (14) follows at once.

Proof of Theorem 1. We have by assumption

lim
�!1

R(x=�)

r(�)
= '(x); x 2 �

uniformly in compact sets in � n f0g. An application of Theorem B b) yields

(17) lim
�!1

PGR(y=�)

r(�)
= PG'(y); y 2 intG

Now we apply Lemma 2, we substitute (14) (and a similar equality for ') into (17)
and obtain

(18) lim
�!1

L bR(iy=�)
r(�)

= Lb'(iy); y 2 intG:

Next we shall apply Theorem A (the Tauberian theorem for the Laplace transform);
then (18) implies

(19) lim
�!1

IG�
bR(�x)
r(�)

= �(x); x 2 G�;

and uniformly in compact sets in G�
1 n f0g (where G

�
1 is smaller than G�). For the

function � in (19) we have L�(iy) = Lb'(iy)KG�(iy), and since KG�(iy) = L�G�(iy)
we have

L�(iy) = Lb'(iy)L�(iy) = L(b' � �G�)(iy):

From this by the uniqueness of the Laplace transform it follows that �(x) =
IG� b'(x), x 2 G, and (19) becomes

lim
�!1

IG�
bR(�x)
r(�)

= IG� b'(x); x 2 G�:

Observe that when G is larger than �, then G� is smaller than �� and thus G�
1 is

smaller than ��. This completes the proof of the theorem.

4. Monotone Fourier transforms. So far we have proved that the regular
variation of a function R in a cone � implies the regular variation of the primitive of
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its Fourier transform in a cone smaller than ��. In this section we shall obtain the
regular variation of bR itself, under the additional assumption that it is monotone.
This will be obtained as a simple consequence of the following lemma.

The cone � de�nes a partial order in Rn in the following way: x �� y if
y� x 2 �. A function F : �! R is said to be monotone increasing (decreasing) in
� if x �� y implies F (x) � F (y) (F (x) � F (y)). For example, if F is positive on
�, then I�F (x) is monotone increasing in �.

Lemma 3 [7]. Let F be monotone on a cone � and let its primitive function
be regularly varying on �, i.e.,

lim
�!1

J�F (�x)

r(�)
= '(x); x 2 �:

Then

lim
�!1

F (�x)

��nr(�)
=  (x); x 2 �

where '(x) = I� (x).

This lemma was proved in [7] (see the proof of Theorem 9.1). Now, the
following corollary is obtained from Theorem 1 by a direct application of Lemma 3.

Corollary 1. Let R satisfy the conditions of Theorem 1, and let moreover

its Fourier transform bR be monotone decreasing on the cone G�. Then (3) implies
that

lim
�!1

bR(�x)
��nr(�)

= b'(x); x 2 G�

uniformly in compact sets in G� n f0g.

5. Fourier transforms of monotone functions. The theorem we prove in
this section is in a certain sense dual to Theorem 1: if a function is monotone and
regularly varying at in�nity in �, then its Fourier transform is regularly varying at
zero in the dual cone ��. Since the functions we deal with will not be integrable in
the entire cone �, we introduce the principal value of the integral.

Let F be a locally integrable function on a cone �. The integral
R
�

F (t)dt is

said to converge in the sense of principal value if the limit lim
jbj!1

R
�\b��

F (t)dt exists

for b 2 �1 where �1 is a cone smaller than �.

If F can be represented as F (x) =
R

x+�

f(t)dt, for some integrable function

f , then F is called the primitive of f . Obviously, if f � 0, then F is monotone
decreasing. In this case F is said to be monotone primitive.

Theorem 2. Let 0 < � < n. Let � be a cone in Rn. Let F be a monotone
primitive function on � and let F be locally integrable on �. Then
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a) the integral de�ning the Fourier transform

(20) bF (x) = Z
�

F (t) cosx � tdt; x 2 ��

converges in the sense of principal value.

b) If F (x) =
R

x+�

f(t)dt, where f is monotone, and if F is regularly varying at

in�nity in � with index �� n, i.e. if

lim
�!1

F (�u)

��nr(�)
= '(u); u 2 �

uniformly in compact sets in � n f0g then�����
bF (x=�)
r(�)

� b'(x)
����� � "(�)jK��(x)j; x 2 ��

and, consequently,

lim
�!1

bF (x=�)
r(�)

= b'(x); x 2 �

uniformly in compact sets in � n f0g where �1 is smaller than ��.

This theorem is a simple corollary of the following Theorem C which was
proved in [4] (see Corollary 5 of Theorem 2).

We shall write ha; bi for the \interval" a+ � \ b� �.

Theorem C. Let 0 < � < n. Let � and G be two cones in Rn. Let k :

� � G ! R be such that k(�u; x=�) = k(u; x) and

����� Rha;bi k(u; x)du
����� � C(x), for

some positive function C(x), x 2 G and all ha; bi � �. Let F be a function on �
satisfying the conditions of Theorem 2. Then

a) the integral

KF (x) =

Z
�

F (u)k(u; x)du; x 2 G

exists in the sense of principal value.

b)

����KF (x=�)r(�)
�K'(x)

���� � "(�)C(x); x 2 G:

where e(�)! 0, as k !1.

We shall consider the following kernel k(u; x) = cosu � x de�ned on � � ��

and we shall prove that it satis�es the conditions of Theorem C. This will prove
that it is possible to apply Theorem C to the Fourier operator (20).

Now obviously, cos(u=� � �x) = cosu � x and in the next lemma we prove
that k(u; x) = cosu � x satis�es also the second condition of Theorem C (with
C(x) = K��(x)) and this will complete the proof of Theorem 2.
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Lemma 3. Let � be a cone in Rn and let K�� be the Cauchy kernel of the
dual cone ��. Then �����

Z
ha;bi

cosx � udu

����� � jK��(x)j ; x 2 ��

for all ha; bi � �.

Proof. We shall prove the lemma by a procedure similar to the proof of
Proposition 1. Denote by �ha;bi, the characteristic function of the interval ha; bi.
We shall show that for the Laplace transform of �ha;bi the following representation
holds

(21) L�ha;bi(z) = in
Z

�\�

A(t0)dt0

(z � t0)n
; z 2 T��

:

where A(t0) is a continuous positive function such that A(t0) � �(n).

If (21) holds, then by an argument similar to the one used in the proof of
Proposition 1, both sides of (21) are analytic functions, and they have an analytic
continuation in a domain containing the real cone int ��, so that by putting z =
x 2 int �� in (21) we have

L�ha;bi(x) = in
Z

�\�

A(t0)dt0

(x � t0)n

and from this it follows that

(22) jL�ha;bi(x)j � �(n)

Z
�\�

dt0

(x � t0)n
; x 2 int ��:

Now, the last integral in (22) equals jK��(x)j (see (9)) and L�ha;bi(x) =
R

ha;bi

eix�udu,

so that (22) becomes �����
Z

ha;bi

eix�udu

����� � jK��(x)j; x 2 int ��

and from this the lemma follows immediately.

Thus we only have to prove (21). Since both sides in (21) are analytic func-
tions in T��

, it is suÆcient to prove this equality for z = iy.

L�ha;bi(iy) =

Z
ha;bi

e�y�tdt =

Z
�\�

dt0
�(t0)Z

�(t0)

e�ry�t
0

rn�1dr;

where �(t0) is (the distance from 0 to) the intersection of the ray rt0 with the cone
a+ �, and �(t0) is the intersection of rt0 with the cone b� �.
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Now, introducing the change of variables r(y � t0) = u in the last integral, and
then introducing the notation

A(t0) =

�(t0)(y�t0)Z
�(t0)(y�t0)

e�uun�1du

(obviously, A(t0) �
R
0 e

�uun�1du = �(n)) we have

L�ha;bi(iy) =

Z
�\�

A(t0)dt0

(y � t0)n
= in

Z
�\�

A(t0)dt0

(iy � t0)n
;

which proves (21), and this completes the proof of the lemma.

At the end let us remark that it seems that, by a better technique (for ex-
ample, a better de�nition of regularly varying functions) it should be possible to
obtain the behaviour of the Fourier transform (in Theorem 1) in the whole dual
cone, and not only in a cone which is smaller.
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