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ABELIAN TYPE THEOREMS FOR SOME

INTEGRAL OPERATORS IN Rn

Tatjana Ostrogorski

Abstract. For integral transforms of functions de�ned on cones in the n-dimensional
Euclidean space we prove two theorems of the following \Abelian" type: The transform of a
regularly varying function is regularly varying.

1. Introduction. Let, as usual, Rn denote the real n-dimensional Euclidean
space. If x = (�1; . . . ; �n) and y = (�1; . . . ; �n) are elements of Rn, their inner
product is denoted by x � y =

Pn
j=1 �j�j and the norm of x by jxj = (x � x)1=2.

The set � � Rn is a cone if x 2 � implies �x 2 �, for every � > 0. An
example of cone is Rn

+ = fx 2 Rn : �1 > 0; . . . ; �n > 0g, the positive octant. We
shall always assume that the cone � is closed, convex, that it has nonempty interior
and that it is acute; see [3] or [4].

When examining the asymptotic relations the notion of regular variation is
very useful. Regularly varying functions were �rst de�ned by Karamata { in the
one-dimensional case (see [2]). This de�nition was generalized to the n-dimensional
case by Yakymiv in the following way.

De�nition [5]. Let � be a cone in Rn. A measurable function R : �! R+ is
regularly varying (at in�nity) if a function ' : �! R+ exists such that

(1) lim
�!1

sup
x2B

����R(�x)R(�e)
� '(x)

���� = 0

for a �xed e 2 � (e 6= 0) and for every compact set B � � n f0g.

Recall that in the de�nition of regularly varying functions in one variable
only the existence of the pointwise limit of R(�x)=R(�) is required and that (the
analogue of) (1) follows by the Uniform Convergence Theorem [2]. It was proved
by Yakymiv that for n � 2 the existence of the pointwise limit would not imply
the existence of the uniform limit and this motivates the De�nition.
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It is easily seen that the class of functions satisfying the De�nition does not
depend on the choice of e; we can assume that '(e) = 1.

The function ' in (1) is homogeneous, i.e. there is an � 2 R, called the
order of ', such that '(�x) = ��'(x), for every � > 0 and x 2 �; moreover, ' is
continuous and bounded away from zero. The order of ' is also called the index of
the regularly varying function R. We shall consistently use the following notation:
R will stand for a regularly varying function, ' for its \index" function, r for the
function in one variable R(�e) (which is obviously regularly varying in R+).

A regularly varying function whose index function is 1 is called a slowly
varying function. Every regularly varying function R can be represented in the
following way R = 'L, where ' is the index function and L is a slowly varying
function.

Finally, let us de�ne regular variation at zero. A measurable function R :
�! R+ is regularly varying at zero (with index �) if the limit

lim
�!1

R(x=�)

r(�)
= '(x)

exists uniformly in x 2 B, for every compact set B � � n f0g.

The main objective of the present paper is the investigation of some integral
operators of the form

(2) KF (x) =

Z
�

F (u)k(u; x)du; x 2 G;

which transform functions de�ned on a cone � into functions de�ned on a cone
G. We shall consider two kinds of such operators (the �rst applicable to arbitrary
regularly varying functions { Section 2, and the second only to the monotone ones
{ Section 3) and we shall prove that for these operators the regular variation of F
implies the regular variation of KF . In Section 4 we deduce analogous results for
the regular variation at zero. These statements are n-dimensional counterparts of
the one-dimensional results from [1].

Let us �rst state some facts about regularly varying functions.

(i) A regularly varying function on � is locally bounded on � (= bounded on every
compact set B � � n f0g) [5].

(ii) For every slowly varying function L there is an asymptotically equivalent radial
slowly varying function Lr [5].

This is easily seen by putting Lr(x) = L(jxje), for some e 2 �; let l be de�ned
by l(jxj) = Lr(x).

Let L be a slowly varying function on � and let F be a locally integrable
function on �. Let juj < Æ denote the set fu 2 � : juj < Æg and similarly for
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juj > �. Then for some � > 0 and some positive constants C1 and C2 we haveZ
juj<Æ

L(�u)F (u)du � C1Æ
�l(�Æ)

Z
juj<Æ

juj��F (u)du(iii)

Z
juj<Æ

L(�u)F (u)du � C2�
��l(��)

Z
juj>�

juj�F (u)du(iv)

for � large enough.

The proof of (iii) and (iv) is similar to the proof of the corresponding one-
dimensional statements [2]. For (iii) we use the following property of slowly varying
functions sup

juj<jxj

juj�L(u) � jxj�l(jxj), for � > 0, jxj ! 1 (see [5]), and similarly

for (iv).

2. Operators with absolutely integrable kernels. Let � and G be
two cones in Rn. A measurable function k : � � G ! R will be called a kernel
(on � � G). In this section we shall consider kernels which satisfy the following
condition. For a given � 2 R

(A)

Z
�

max(juj��+�; juj�+�)jk(u; x)jdu � C(x); x 2 G;

for some � > 0 and a positive function C(x).

The number � is called the index of the kernel k.

Now consider an operator de�ned as in (2). Assume moreover that the func-
tion k is homogeneous of order �, for some � 2 R (i.e. k(�u; �x) = ��k(u; x)).
Then we have

(3) KF (�x) = ��+n
Z
�

F (�u)k(u; x)du:

Indeed, by making a change of variables we have

KF (�x) =

Z
�

F (u)k(u; �x)du = �n
Z
�

F (� v)k(�v; �x)dv

= ��+n
Z
�

F (�v)k(v; x)dv

which proves (3),

Proposition 1. Let � and G be two cones in Rn. Let k be a kernel on ��G
satisfying (A) with index 0, homogeneous of order �, and let L be a slowly varying
function on �. Then���� KL(�x)��+nl(�)

�K1(x)

���� � "(�)C(x); x 2 G;
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where "(�)! 0, as �!1.

Proof. We have by (3)

(4)

KL(�x)

��+nl(�)
�K1(x) =

Z
�

�
L(�u)

l(�)
� 1

�
k(u; x)du =

=

Z
juj<Æ

+

Z
Æ�juj��

+

Z
Æ�juj

= I1 + I2 + I3

where Æ and � will be chosen later.

For the integral I1 we have

jI1j �
1

l(�)

Z
juj<Æ

L(�u)jk(u; x)jdu+

Z
juj<Æ

jk(u; x)jdu:

If we apply property (iii) of slowly varying functions and then condition (A) we
obtain

(5)

jI1j �
1

l(�)
C1Æ

�l(�Æ)

Z
juj<Æ

juj��jk(u; x)jdu+

Z
juj<Æ

jk(u; x)jdu �

� C1(l(�Æ)=l(�) + 1)ÆnC(x) � C3Æ
�C(x)

for � large enough.

Analogously, using (iv) instead of (iii) we have for I3

(6) jI3j � C4�
��C(x)

for � large enough.

Now for a given " > 0 we choose Æ and � such that C3Æ
� < " and C4�

�� < ".
Then from (5) and (6) we have

(7) jI1j+ jI3j < "C(x)

Next for Æ and � chosen as above consider I2. Since the set Æ � juj � � is
compact it follows from the de�nition of slowly varying functions that

(8) jI2j < "C(x)

for � large enough. Now the proof of the proposition follows by substituting (7)
and (8) into (4).

Theorem 1. Let � and G be two cones in Rn. Let k be a kernel satisfying
(A) with index �, homogeneous of order �, and let R be u regularly varying function
of index p in �. Then

(9)

���� KR(�x)��+nr(�)
�K'(x)

���� � C(x)"(�); x 2 G
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where "(�)! 0 as �!1.

Proof. The function ' is homogeneous of order � and continuous and bounded
away from zero; therefore

C1juj
� � '(u) = juj�'(u0) � C2juj

�

and from this it follows that (A) is equivalent toZ
�

max(juj��; juj�)'(u)k(u; x)du � C3C(x)

which means that the function k1(u; x) = '(u)k(u; x) is a kernel satisfying (A)
with index 0. It is moreover homogeneous of order � + �, and thus it satis�es
the conditions of Proposition 1 (with � replaced by � + � ). We shall apply this
proposition to the operator K1 with kernel k1 and to the slowly varying function
L = R='. First observe that

R(�v)

r(�)
=
L(�v)'(�v)

l(�)'(�e)
=
L(�v)��'(v)

l(�)��
:

From this, by an application of (3), it follows that

KR(�x)

��+nr(�)
�K'(x) =

Z
�

�
R(�v)

r(�)
� '(v)

�
k(v; x)dv =

=

Z
�

�
L(�v)

l(�)
� 1

�
'(v)k(v; x)dv =

K1L(�x)

��+n+�l(�)
�K11(x):

Now an application of Proposition 1 completes the proof of the theorem.

Remark. We have not proved yet that KR is regularly varying, for (9) gives
only the pointwise convergence of KR(�x)=��+nr(�) (and not the uniform). How-
ever, it is immediate from (9) that we shall indeed have regular variation if C(x) is
assumed to be locally bounded (for instance, C(x) = C). We shall formulate this
remark as a corollary and observe that similar considerations are in order whenever
we have an equation similar to (9) (see (19) in Theorem 2 below).

Corollary 1. Let k and R satisfy the conditions of Theorem 1 and let
the function C(x) in (A) be bounded on compact sets in G1 n f0g, where G1 is a
cone contained in, or equal to G. Then jKRj is regularly varying in G1 with index
function jK'j and index �+ n+ �.

In the next corollary we shall consider several examples of operators to which
Theorem 1 applies.

Let us write ha; bi for the \interval", de�ned by ha; bi = fx 2 � : a �� x ��

bg = (a + �) \ (b � �). We shall write ia; bi for the di�erence of two intervals
ia; bi = h0; bin h0; ai, and also by abusing the notation ha;1i = a+� and ia;1i =
� n h0; ai.
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Consider the following three operators:

I�f(x) =

Z
ho;xi

f(u)du; x 2 �(10)

J�f(x) =

Z
hx;1i

f(u)du; x 2 �(11)

J 1
�f(x) =

Z
ix;1i

f(u)du; x 2 �:(12)

Corollary 2. Let R be a regularly varying function on a cone �, with index
� and index function '.

a) Let �n < � < 0. Then I�R is regularly varying in � with index �+ n and index
function I�'.

b) Let � > �n. Then J�R and J 1
�R are regularly varying in � with index � + n

and index functions J�' and J 1
�' respectively.

Proof. We shall prove a) only, the proof of b) being similar. Obviously (10)
is an operator of the form (2) with kernel k(u; x) = �h0;xi(u) (where �A is the
characteristic function of the set A). We have to prove that this kernel satis�es the
conditions of Corollary 1. Since k(�u; �x) = k(u; x), we see that k is homogeneous
of order 0. Next we prove that (A) holds. We have

Z
�

max(juj��� ; juj�+�)jk(u; x)jdu =

Z
juj�1

+

Z
juj>1

= I1 + I2:

For the �rst integral we have

(13) I1 =

Z
juj�1

juj���jk(u; x)jdu �

Z
juj�1

juj���du � C

if 0 < � < �+ n; and for the second, if 0 < � < ��

(14) I2 =

Z
juj>1

juj�+� jk(u; x)jdu �

Z
juj>1

k(u; x)du �

Z
h0;xi

du � V (x):

From (13) and (14) it follows that if we choose � < min(��; �+ n), then I1 + I2 �
C + V (x), and this proves (A) with C(x) = C + V (x).

If B is a compact set in � n f0g, then sup
x2B

V (x) is bounded, since V (x) is the

volume of a bounded set. Now Corollary 1 can be applied to complete the proof.

The functions de�ned in (10), (11) and (12) may be called primitive functions
for f . They are monotone in the following sense.
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A cone � de�nes a partial order in Rn. We say that x �� y if y � x 2 �.
A real function F is said to be monotone increasing (decreasing) on � if x �� y
implies F (x) � F (y) (F (x) � F (y)).

Now, it is obvious that for positive f the function I�f is monotone increasing
in �, and J�f and J 1

�f are monotone decreasing.

Remark. For monotone functions it is possible to obtain the converse of
Corollary 2 (the Tauberian theorem for operators (10), (11) and (12)), i.e., that
for monotone R the regular variation of I�R (or J�R or J 1

�R) implies the regular
variation of R. This was proved (implicitly) by Yakymiv [5] (see the proof of
Theorem 9.1).

3. Operators with nonabsolutely integrable kernels. In this section we
shall consider operators K with a di�erent kind of kernel (satisfying condition (B)
below). These operators will be applied to monotone functions and the integrals
de�ning them will not be absolutely convergent.

Let F be a locally integrable function on �. The integral
R
�

F (t)dt is said

to converge in the sense of principal value if the limit lim
jbj!1

R
h0;bi

F (t)dt exists for

b 2 �1, where �1 is a cone such that �1 �
R
�.

Let � and G be two cones in Rn. In this section we shall consider kernels on
��G which satisfy the following condition

(B)

�����
Z

ha;bi

k(u; x)du

����� � C(x); x 2 G

for some positive function C(x) and all intervals ha; bi � �.

Let us call, for short, the function F monotone primitive if there is a positive
integrable function f on � such that F (x) =

R
x+�

f(t)dt = J�f(x).

In the following proposition we prove the existence of the integral KF (x).
This proposition is the analogue of Dirichlet s criterion for nonabsolutely convergent
integrals.

Proposition 2. Let � and G be two cones in Rn. Let k be a kernel on ��G
satisfying (B) and let F be a monotone primitive function on �. Then the integral

(13) KF (x) =

Z
�

F (u)k(u; x)du; x 2 G

exists in the sense of principal value.

The proof of the proposition is based on the following lemma.
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Lemma 1. Let F and k satisfy the conditions of Proposition 2. Let F (u) =R
u+�

f(t)dt. Then

(14) jIa;bj �

�����
Z

ia;bi

F (u)k(u; x)du

����� � C(x)

Z
ia;1i

f(t)dt:

With this lemma, Proposition 2 follows at once. Indeed, to show that (13)
converges in the sense of principal value we have to show that the \remainder"
Ia;b of this integral tends to 0, as jaj; jbj ! 1. Now, by (14) we have jIa;bj �
C(x)

R
ia;1i

f(t)dt, and the last integral tends to 0 as jaj ! 1, since f is integrable.

This proves Proposition 2.

Proof of Lemma 1. First we shall prove that for k satisfying (B) we have

(15)

�����
Z

ia;bi

k(u; x)du

����� � 2C(x)

Indeed, since ia; bi = h0; bi n h0; ai we have
R

ia;bi

=
R

h0;bi

�
R

h0;ai

. Now an application

of (B) yields (15).

To prove (14) we shall apply Fubini's Theorem to the integral

(16) Ia;b =

Z
ia;bi

F (u)k(u; x)du =

Z
ia;bi

k(u; x)

Z
u+�

f(t)dtdu:

The domain of integration in the double integral is de�ned by u 2 ia; bi, which
means (i) u 2 ia;1i and (ii) u <� b, and by t 2 u+ �, which means (iii) t >� u.

Now, it is easily seen that by (i) and (iii) we have t 2 ia;1i, and that for u
we have, by (ii) and (iii), u <� b and u <� t, which, if we put c = min�(b; t), is
equivalent with u <� c; and this together with (i) gives u 2 ia; ci.

Thus if we reverse the order of integration in (16) we have

Ia;b =

Z
ia;bi

k(u; x)

Z
u+�

f(t)dtdu: =

Z
ia;1i

f(t)

Z
ia;ci

k(u; x)dudt:

And now we apply (15) to the last integral:

jIa;bj =

Z
ia;1i

f(t)

�����
Z

ia;ci

k(u; x)du

�����dt � C(x)

Z
ia;1i

f(t) dt

which completes the proof of the lemma.

Now we shall consider the regular variation of monotone primitive functions.
First we prove a lemma.
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Lemma 2. Let R be monotone primitive on a cone �, R(x) =
R

x+�

f(t)dt such

that f is also monotone, and let R be regularly varying with index �, �n < � < 0.
Then

a) the function f is regularly varying with index function  such that '(x) =R
x+�

 (u)du.

b) Let k satisfy condition (B), then

(17)
1

r(�)

�����
Z

ia;1i

R(�u)k(u; x)du

����� � C(x)

Z
ia;1i

 (u)du:

Proof. Part a) follows by the remark at the end of Section 2.

b) By Lemma 1 we have

(18)
1

r(�)

�����
Z

ia;bi

R(�u)k(u; x)du

����� �
C(x)

r(�

Z
i�a;1i

f(u)du:

But since f is regularly varying, an application of Corollary 2 b) yields that
J 1
�f(a) =

R
ia;1i

f(u)du is regularly varying and has the index function J 1
� (a).

Thus letting �!1 in (18) we shall have 1=r(�)
R

i�a;1i

f(u)du!
R

ia;1i

 (u)du and

this proves (17).

Theorem 2. Let � and G be two cones in Rn. Let �n < � < 0. Let R
be regularly varying on � with index �, and let R be monotone primitive, R(x) =R
x+�

f(t)dt, such that f is also monotone. Let k be a bounded kernel on � � G

satisfying (B), homogeneous of order �. Then

(19)

���� KR(�x)��+nr(�)
�K'(x)

���� � "(�)C(x); x 2 G

where "(�)! 0 as �!1.

Proof. We have, as in the proof of Theorem 1 (see (3)),

(20)

KR(�x)

��+nr(�)
�K'(x) =

Z
�

�
R(�v)

r(�)
� '(v)

�
k(v; x)dv =

=

Z
i0;ai

+

Z
ia;Ai

+

Z
iA;1i

= I1 + I2 + I3;

say. Consider I1. Since R is regularly varying with index �, �n < � < 0, from
Corollary 2 a) it follows that I�R(x) =

R
h0;xi

R(u)du is regularly varying with index
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function I�'(x) =
R

h0;xi

'(u)du (and with index � + n). From this we shall have,

since k is bounded

jI1j �
1

r(�)

Z
h0;ai

R(�v)dv +

Z
h0;ai

'(v)dv =
I�R(�a)

�nr(�)
+ I�'(a) < 2I�'(a)

for � large enough. Now given " (depending on �) we can choose a small enough
in � such that

(21) jI1j < ":

For the integral I3 we have

jI3j �
1

r(�)

�����
Z

iA;1i

R(�v)k(v; x)dv

����� +
�����
Z

iA;1i

'(v)k(v; x)dv

�����
and since R satis�es the conditions of Lemma 2, we have by (17)

jI3j � 2C(x)

Z
iA;1i

 (u)du:

Now if we choose A large enough in � we shall have
R

iA;1i

 (u)du < ". Thus we

have proved

(22) jI3j < "C(x):

For a and A chosen as above we consider I2

(23) jI2j �

Z
iA;1i

����R(�v)r(�)
� '(v)

���� dv ! 0

as �!1, by the de�nition of regularly varying functions, since ia;Ai is compact
in � n f0g. By substituting (21), (22) and (23) into (20) we complete the proof of
the theorem.

Remark. Obviously, we can obtain as a corollary of this theorem a statement
similar to Corollary 1 (see also the Remark after Theorem 1); namely, assuming the
local boundedness of C(x) the regular variation of R implies the regular variation
of jKRj.

4. Asymptotic behavior at zero. In the present section we prove two
corollaries of Theorems 1 and 2.

Corollary 4. Let R and k satisfy the assumptions of Theorem 1, or the
assumptions of Theorem 2. Then

lim
�!1

R(u=�)

r(�)
= '(u); u 2 �;
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uniformly in compact sets in � n f0g, implies

(23) lim
�!1

KR(x=�)

����nr(�)
= K'(x); x 2 G;

and the convergence in (23) is uniform in compact sets in G n f0g, under the
additional assumption that C(x) is locally bounded.

Proof. We have

KR(x=�) =

Z
�

R(u)k(u; x=�)du =

Z
�

R(v=�)k(v=�; x=�)��ndv =

= ��n��
Z
�

R(v=�)k(v; x)dv

and if we use this equation instead of (3), the proof of the corollary follows along
the same lines as the proof of Theorem 1 or the proof of Theorem 2.

Next we consider kernels which instead of bein homogeneous of order a satisfy
the following condition

(24) k(�u; x=�) = k(u; x):

Corollary 5. Let R and k satisfy the assumptions of Theorem 1 or the
assumptions of Theorem 2, { only let k satisfy (24) instead of being homogeneous
of order �. Then

lim
�!1

R(�u)

r(�)
= '(u); u 2 �;

uniformly in compact sets in � n f0g, implies

(25) lim
�!1

KR(x=�)

�nr(�)
= K'(x); x 2 G:

Here also we have uniform convergence in (25) if the function C(x) is locally
bounded and the proof is very similar to the proof of Corollary 4.
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