PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 35 (49), 1984, pp. 49-51

THE LEVITZKI RADICAL FOR Ω -GROUPS

A. Buys and G. K. Gerber

Abstract. The concept locally nilpotent ideal of an Ω -group is defined. The class of locally nilpotent Ω -groups is a Kurosh-Amitsur radical class. Furthermore, the Levitzki radical of an Ω -group is the intersection of all Ω -prime ideals P such that G/P is Levitzki semi-simple.

1. Notations and definitions. The notation and definitions of Higgins [4] and Buys and Gerber [2] will be used. For the sake of convenience we define the basic concepts. By $\mathbf{a} = (a_1, a_2, \ldots, a_n) \in G$ we mean that $a_i \in G$, $i = 1, 2, \ldots, n$. Higgins [4] called words which involve only the operations $\omega \in \Omega$, monomials. We shall call such words Ω -words. If $f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n)$ is an Ω -word in the indeterminates x_1, x_2, \ldots, x_n then $f(a) = f(a, a, \ldots, a)$. Let Ω be a fixed set of operations.

1.1 Definition. $\omega \in \Omega$ will be called a trivial operation in the variety K of Ω -groups if $\mathbf{x}\omega = 0$ is satisfied in K. That is for all $G \in K$ and $\mathbf{a} \in G$, $\mathbf{a}\omega = 0$ holds. $\omega \in \Omega$ is a non-trivial operation if it is not trivial. An Ω -word which involves only non-trivial operations will be called a non-trivial Ω -word.

In Buys and Gerber [2], we defined the concept of an Ω -prime ideal for an Ω -group. That definition should actually be:

1.2 Definition. An ideal P of the Ω -group G is called an Ω -prime ideal if for all non-trivial $\omega \in \Omega$ and ideals A_1, A_2, \ldots, A_n of G such that $A_1 A_2 \ldots A_n \omega^G \subseteq P$ it follows that $A_i \subseteq P$ for some $i = 1, 2, \ldots, n$. All the results of Buys and Gerber [2] carries over with this slight alteration.

2. Locally nilpotent Ω -groups. Bhandari and Sexana [1] called an ideal I of a near-ring N locally nilpotent if any finite subset of I is nilpotent. They have shown that their definition coincides with the well-known definition of Levitzki defined for associative rings.

AMS Subject Classification (1980): Primary 20N99, Secondary 16A12, 16A22, 08A99.

2.1 Definition. A subset S of the Ω -group G is nilpotent if there exists a non-trivial Ω -word $f(\mathbf{x})$ such that $f(S) = \{f(\mathbf{s}) | \mathbf{s} \in S\}$ is zero.

2.2 Definition. Let A be a subset of the Ω -group G. A is called locally nilpotent if any finite subset of A is nilpotent.

2.3 COROLLARY. If $A \subseteq B \subseteq G$ and B is locally nilpotent then A is locally nilpotent. If $A \subseteq G$ is nilpotent then A is locally nilpotent.

2.4 LEMMA. Let I be an ideal of the Ω -group G. G is locally nilpotent if and only if I and G/I are locally nilpotent.

Proof. From 2.3 it follows that I is locally nilpotent. Let $\{g_1 + I, g_2 + I, \ldots, g_n + I\}$ be any finite subset of G/I. Since G is locally nilpotent there exists a non-trivial Ω -word $f(\mathbf{x})$ such that $f(\mathbf{a}) = 0$ for all $\mathbf{a} \in \{g_1, g_2, \ldots, g_n\}$. It follows that

$$f(\mathbf{a}+I) = f(\mathbf{a}) + I \quad (\text{Higgins } [\mathbf{4}, \text{ Theorem 3A}])$$
$$= I \quad \text{for all } \mathbf{a}+I \in \{g_1+I, g_2+I, \dots, g_n+I\}.$$

Thus G/I is locally nilpotent.

For the converse let $\{g_1, g_2, \ldots, g_n\}$ be any finite subset of G. Since G/I is locally nilpotent, there exists a non-trivial Ω -word $f(\mathbf{x})$ such that $f(\mathbf{a}+I) = 0$ for all $\mathbf{a}+I \in \{g_1+I, g_2+I, \ldots, g_n+I\}$. It follows that $f(\mathbf{a}) \in I$ for all $\mathbf{a} \in \{g_1, g_2, \ldots, g_n\}$. Let $A = \{f(\mathbf{a}) | \mathbf{a} \in \{g_1, g_2, \ldots, g_n\}$. A is finite. Since $A \subseteq I$ there exists a nontrivial Ω -word $f_1(\mathbf{y})$ such that $f_1(\mathbf{b}) = 0$ for all $\mathbf{b} \in A$ In particular, $f_1(f(\mathbf{a})) = 0$ for all $\mathbf{a} \in \{g_1, g_2, \ldots, g_n\}$. Since $f_1(f(\mathbf{x}))$ is, a non-trivial Ω -word, the lemma follows.

2.5 LEMMA. Let I and J be locally nilpotent ideals of the Ω -group G. I + J is a locally nilpotent ideal of G.

Proof. The lemma follows from Higgins [4, Theorem 3C] and 2.4.

2.6 COROLLARY. A finite sum of locally nilpotent ideals of G is a locally nilpotent ideal of G.

2.7 LEMMA. If I_{α} , $\alpha \in A$, are locally nilpotent ideals of G then $\sum I_{\alpha}$ is a locally nilpotent ideal of G.

Proof. Since any finite subset of $\sum I_{\alpha}$ is contained in a finite sum of locally nilpotent ideals, the result follows from 2.6.

2.8 THEOREM. The class $\mathcal{G} = \{G | G \text{ is a locally nilpotent } \Omega\text{-group}\}$ is an absolutely hereditary radical class.

Proof. Properties R3, R5 and R7 of Rjabuhin [5] respectively follow from 2.4, 2.7 and 2.4. From Rjabuhin [5], Theorem 1.2 it follows that G is a radical class.

From 2.3 it follows that G is an absolutely hereditary class (Rjabuhin [5, Definition p. 151]).

2.9 THEOREM. Let L(G) be the Levitzki radical of G that is L(G) is the sum of all locally nilpotent ideals of G. $L(G) = \bigcap \{P_{\alpha} | P_{\alpha} \text{ is an } \Omega \text{-prime ideal of } G \text{ such that } L(G/P_{\alpha}) = 0\}.$

Proof. Every locally nilpotent ideal in G and thus also L(G) is contained in P_{α} for each Ω -prime ideal P_{α} with $L(G/P_{\alpha}) = 0$. It follows that $L(G) \subseteq \cap \{P_{\alpha} | P_{\alpha}$ is an Ω -prime ideal of G such that $L(G/P_{\alpha}) = 0\} = P$ (say).

Assume there exists an $a \in P$ such that $a \notin L(G)$. Since $a \notin L(G)$ every ideal I of G such that $a \in I$ is not locally nilpotent. This holds for a^G . Thus there exists an $A = \{a_1, a_2, \dots, a_n\} \subseteq a^G$ such that A is not nilpotent. Furthermore, $\{f(\mathbf{a}) | \mathbf{a} \in A\}$ is not nilpotent for any nontrivial Ω -word $f(\mathbf{x})$. Otherwise there would exists a non-trivial Ω -word $f_1(\mathbf{y})$ such that $f_1(\{f(\mathbf{a}) | \mathbf{a} \in A\}) = 0$ and thus $f_1(f(\mathbf{a})) = 0$ for all $\mathbf{a} \in A$ contradicting the fact that A is not nilpotent. Let $\mathcal{J} = \{I | I \text{ is an ideal of } G \text{ such that } L(G) \subseteq I \text{ and } \{f(\mathbf{a}) | \mathbf{a} \in A\} \not\subseteq I \text{ for any}$ non-trivial Ω -word $f(\mathbf{x})$. $\mathcal{J} \neq \emptyset$ since $L(G) \in \mathcal{J}$. Applying Zorn's lemma \mathcal{J} has a maximal element Q (say). Thus $L(G) \subseteq Q$ and $\{f(\mathbf{a}) | \mathbf{a} \in A\} \not\subseteq Q$ for any nontrivial Ω -word $f(\mathbf{x})$. We show that Q is an Ω -prime ideal with L(G/Q) = 0. We need only show that G/Q is an Ω -prime Ω -group (Buys and Gerber [2, Corollary 2.10]). Let $\omega \in \Omega$ be non-trivial and $I_1/Q, I_2/Q, \ldots, I_n/Q$ ideals of G/Q such that $(I_1/QI_2/Q\ldots I_n/Q)\omega = 0$. From Higgins [4] it follows that $I_1I_2dotsI_n\omega \subseteq Q$. If $I_j/Q \neq 0$ for each j = 1, 2, ..., n then $I_j \supset Q$. Since Q is maximal there exist non-trivial Ω -words $f_1(\mathbf{x}^{(1)}, f_2(\mathbf{x}^{(2)}, \dots, f_n(\mathbf{x}^{(n)}))$ such that $\{f(\mathbf{a}) | \mathbf{a} \in A\} \subseteq I_i$ $j = 1, 2, \ldots, n$. Therefore

$$(\{f_1(\mathbf{a}) | \mathbf{a} \in A\} \dots \{f_n(\mathbf{a}) | \mathbf{a} \in A\}) \omega \subseteq I_1 I_2 \dots I_n \omega \subseteq Q.$$

In particular we have $(f_i(\mathbf{a})f_2(\mathbf{a}) \dots f_n(\mathbf{a}))\omega \in Q$ for each $\mathbf{a} \in A$. Thus there exists a non-trivial Ω -word $g(\mathbf{x})$ defined by $g(\mathbf{x}) = (f_1(\mathbf{x})f_2(\mathbf{x}) \dots f_n(\mathbf{x}))\omega$ such that $\{g(\mathbf{a}) | \mathbf{a} \in A\} \subseteq Q$. This is a contradiction. It follows that $I_j/Q = 0$ for some j and thus that G/Q is an Ω -prime Ω -group.

Suppose that $W/Q \neq 0$ is a locally nilpotent ideal of G/Q. Then $W \supset Q$ and there exists a non-trivial Ω -word $f(\mathbf{x})$ such that $\{f(\mathbf{a}) \in A\} \subseteq W$ since Q is maximal. The family of cosets $\{f(\mathbf{a}) + Q | \mathbf{a} \in A\}$ is a finite set in W/Q. Sinco W/Qis locally nilpotent, $\{f(\mathbf{a}) + Q | \mathbf{a} \in A\}$ is nilpotent. Thus there exists a non-trivial Ω -word $f_1(\mathbf{x})$ such that $f_1(\mathbf{b}) = 0$ for every $\mathbf{b} \in \{f(\mathbf{a}) + Q | \mathbf{a} \in A\}$. It follows that $\{f_1(f(\mathbf{a})) | bolda \in A\} \subseteq Q$ which is a contradiction. Therefore L(G/Q) = 0. We have proved that Q is one of the ideals P_{α} such that $L(G/P_{\alpha}) = 0$ and, therefore $P \subseteq Q$. But $A \subseteq P$ and $\{f(\mathbf{a}) | \mathbf{a} \in A\} \subseteq P$ for every Ω -word and in particular for non-trivial Ω -words. Since $P \subseteq Q$ it also holds for Q and this is a contradiction. Therefore $P \subseteq L(G)$.

As a result of the definition of Rjabuhin [5, p. 156], we have

2.10 THEOREM. Every Levitzki semi-simple Ω -group is isomorphic to a subdirect sum of Ω prime Levitzki semi-simple Ω -groups.

A. Buys and G. K. Gerber

REFERENCES

- M.C. Bhandari, P.K. Sexana, A note on Levitzki radical of near-ring, Kyungpook Math. J. 20 (1980), 183-188.
- [2] A. Buys, G.K. Gerber, The prime radical of Ω -groups, Comm. in Algebra 10 (1982), 1089–1099.
- [3] N.J. Divinsky, Rings and Radicals, George Allen & Unwin, London, 1965.
- [4] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3 (1956), 366-416.
- [5] Ju.M. Rjabuhin, Radicals of Ω -groups I, general theory, Matt. Issled. **3** (1968), 123–160 (in Russian).

Department of Matematics University of Port Elizabeth 6000 Port Elizabeth South Africa (Received 12 11 1982)