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FINDING TRICYCLIC GRAPHS WITH A MAXIMAL NUMBER

OF MATCHINGS { ANOTHER EXAMPLE

OF COMPUTER AIDED RESEARCH IN GRAPH THEORY

Ivan Gutman and Drago�s Cvetkoi�c

Abstract. Tricyclic graphs on n vertices with maximal number of matchings are deter-
mined by a computer search for small values of n and by an induction argument for the rest. The
computer search is performed by the interactive programming system \GRAPH", implemented
at the University of Belgrade, and represents a typical example of the usage of this system in
scienti�c research.

1. Introduction and the Main Result. We consider �nite graphs without
loops or multiple edges. Let p(G; k) be the number of k-matchings of the graph G.
We assume p(G; 0) = 1 and p(G; k) = 0 for k < 0.

Let G and H be two graphs. If p(G; k) � p(H; k) for all k = 1; 2; . . . , then we
say that G is m-greater than H or H is m-smaller than G and denote it by G � H
or H � G.

If G � H and H � G, the graphs G and H are said to be m-equivalent,
G � H . If neither G � H nor H � G, the two graphs G and H are said to be
m-incomparable and we denote this by G#H . If G � H , but the graphs G and H
are not m-equivalent, we say that G is strictly m-greater than H .

The relation N is an equivalence relation in any set of graphs . The corre-
sponding equivalence classes will be called matching equivalence classes (of the set
). The relation � induces a partial ordering of the set = �. An equivalence class
is said to be the greatest if it is greater than any other class. A class is maximal if
there is no other class greater than it.

The graphs belonging to greatest (resp. maximal) matching equivalence class-
es will be said to be m-greatest (resp. m-maximal) in the set considered.

The m-greatest and/or m-maximal graphs have been determined for several
classes of graphs [5, 6, 7]. For example, the m-greatest element in the set of all
graphs with n vertices is the complete graph Kn[6].
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0. The m-greatest forest with n vertices is the path Pn[5].

1. The m-greatest unicyclic graph with n vertices is the cycle Cn[6]. The
bicyclic graphs with greatest number of matchings have also been considered in [6].
Unfortunately, the result reported in [6] and also in [7] is erroneous. The correct
statement is the following.

2. In the set of all bicyclic graphs with n vertices (n � 4) there exists a
greatest matching equivalence class. For all values of n, except for n = 9, the
m-greatest graph is unique. For n = 9 the greatest matching equivalence class
possesses two elements. The m-greatest bicyclic graphs are presented on Fig. 1.

In the present paper we shall describe the analogous result for the case of
tricyclic graphs. The search for m-maximal tricyclic graphs proved, however, to be
a much more diÆcult task and the results obtained are signi�cantly more complex
than the statements 0Æ, 1Æ and 2Æ.

3. We shall prove the following result.

Theorem 1. In the set of all tricyclic graphs with n vertices (n � 4) the
greatest matching equivalence class exists only for n = 4; 5; 6; 7; 8, and 9. For
n � 10 there exist two maximal matching equivalence classes. All these equivalence
classes possess a unique element, except for n = 9, when the number of m-greatest
graphs is two.

The corresponding graphs are presented in Fig. 2.

2. Preliminaries. To begin the proof we need some more de�nitions and
auxiliary results.

If two graphs G and H are isomorphic, we write G = H . If the graph G is
composed of two components G1 and G2, we write G = G1 uG2.

The basic properties of the numbers p(G; k) and of the ordering � have been
considered elsewhere [3, 4, 5, 6 7]. Some elementary results about the relation �
are summarized in the following lemmas.

Lemma 1. If G = H, then G � H. In addition, G u K � G. If L is a
subgraph of G, then G � L. If G1 � G2, then G1 uH � G2 uH.

Lemma 2. If in the graph G the edge e connects the vertices v, and vs then
p(G; k) = p(G� e; k) + p(G� vr � vs; k � 1).

Let e be an edge of the graph G connecting the vertices vr and vs. Then by
G(e=j) we denote the graph obtained by inserting j new vertices (of degree two)
on the edge e. Hence if G has n vertices, then G(e=j) has n+ j vertices; if j = 0,
then G(e=j) = G; if j > 0, then the vertices vn and vs are not adjacent in G(e=j).

We will say that the graph G(e=j) possesses an internal path of length j + 1
(between the vertices vr and vs).

Lemma 3. For all j � 0, p(G(e=j+2); k) = p(G(e=j+1); k)+p(G(e=j); k�1).
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Proof. A k-matching of the graph G(e=j+2) belongs to one of the classes �1
to �5, as indicated in Fig. 3. A k-matching of the graph G(e=j +1) is either of the
type �01 or �

0

2 or �
0

3. A (k � 1)-matching of G(e=j) belongs either to the class �04a
or �05. There is an obvious one-to-one correspondence between the classes �i and
�0i for all i = 1; 2; 3; 4, and 5. In Fig. 3 the ellipse symbolizes the same subgraph in
each of the cases, �1 to �5 and �01 to �

0

5. �

Let (n) = (n; 0) be a set of graphs with n vertices. Let (n; j), j > 0, be
the set of graphs with n+ j vertices, de�ned recursively as follows. (n; j + 1) for
j 6= 1 is the set of graphs obtained by inserting a new vertex into an edge in the
graphs of the set (n; j). In addition, (n; 2) contains only those graphs formed by
the described procedure from (n; 1) whish possess internal paths of length three.
Then, of course, all graphs from (n; j), j � 2, possess internal paths of length
three.

Lemma 3 has following important consequence.

Lemma 4. If G(e=0) and G(e=1) are the m-greatest graphs in (n) and (n; 1),
respectively, then G(e=j) is the m-greatest graph in the set (n; j), for all j.

Proof. The conclusion of Lemma 4 is true for j = 0 and j = 1 by hypothesis.
Suppose it is true for some j = j0 and j = j0 + 1. For G(e=j0 + 2), Lemm 3 gives
p(G(e=jo+ 2); k) = p(G(e=j0 + 1); k) + p(G(e=j0); k � 1).

Since every element of (n; j0+2) can be presented in the form H(f=2), with
H 2 (n; j0) and, since f is an edge of H , we have by lemma 3,

p(H(f=2); k) = p(H(f=1); k) + p(H(f=0; k� 1);

where H(f=1) 2 (n; j0 + 1) and H(f=0) = H 2 (n; j0). The inductive hy-
pothesis implies that p(G(e=j0 + 1); k) � p(H(f=1); k) and p(G(e=j0); k � 1) �
p(H(f=0); k�1) for all values of k. Therefore also p(G(e=j0+2); k) � p(H(f=2); k)
and consequently G(e=j0 + 2) � H(f=2). �

We shall need the next two results previously obtained in [6].

Lemma 5. For every graph H with n vertices and cyclomatic number c there
is a connected graph G with n vertices and cyclomcttic number c, such that G is
m-greater than H. If H is disconnected then G is strictly m-greater than H.

Lemma 6. For every graph H with n vertices and cyclomatic number c (c > 0)
there is a graph G with n vertices, cyclomatic number c and without vertices of
degree one, such that G is m-greater than H. If H has vertices of degree 1, then G
is strictly m-greater than H.

3. Proof of Theorem 1. According to Lemmas 5 and 6 an m-greatest
or m-maximal tricyclic graph must be connected and must not possess vertices of
degree one. One can easily check by inspection that connected tricyclic graphs
without vertices of degree one can be classi�ed into 15 di�erent types, which are
presented in Fig. 4. Vertices of degree two are not indicated in Fig. 4.
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We shall denote by i(i = 1; . . . ; 15) the classes of those tricyclic graphs which
are indicated in Fig. 4. All graphs which are homeomorphic (i.e. di�er only in the
number and position of vertices of degree two) belong to the same class.

By ifng we denote the set of the graphs from the class i, having exactly n
vertices.

Note that for every class i, i = 1; . . . ; 15, there exists an integer ni, such
that for n > ni, all graphs from i(n) possess internal paths od length three. For
example, n1 = 10, n8 = 9, n15 = 12, etc.

Lemma 7. For each set of graphs i(n) (i = 1; . . . ; 14) there exists an integer
n0(i) such that for n � n0(i) a greatest matching equivalence class exists in i(n).
For i = 1; 2; 3; 4; 5; 7; 8; 9; 12; 13, and 14 the m-greatest graph in i(n) is unique
whereas for i = 6, 10 and 11 there are two m-greatest graphs in i(n).

The m-greatest graphs in i(n) will be denoted by Gi
n and (for i = 6; 10 and

11 only) G
i

n. Of course, G
i
n � G

i

n (i = 6; 10; 11). These graphs are presented in Fig.
5 together with the smallest value for n0(i). The dotted lines in Fig. 5 symbolize
internal paths.

Proof. For each i = 1; . . . ; 14 Lemma 7 has been veri�ed for n = n0(i) and
n = n(i) + 1 by computer search. Since for any i = 1; . . . ; 14 and for any j > 0

there exists an edge e in Gi
n0(i)

, such that Gi
n0(i)+j

= Gi
n0(i)

(e=j), Lemma 7 can be

proved by induction using Lemma 4. �

The set 15 is very likely an exception. For n � 16 there is no greatest
matching equivalence class in 15(n). Moreover, we established that for n � 16 any
two graphs from 15(n) are m-incomparable. However, this does not disturb our
search for maximal graphs since the following lemma is valid.

Lemma 8. Any graph from 15(n) is strictly m-smaller than G8
n.

Proof. An arbitrary element of 15(n) can be represented by the graph G, as
displayed in Fig. 6. Deleting from G the edge ers joining vertices vr and vs and
introducing a new edge ert joining vertices vr and vt we obtain a graph H 2 8(n)
(see Fig. 6). It is suÆcient to prove that H is strictly m-greater than G.

By applying Lemma 2 to the edge ers of G and to the edge ert of H we
immediately obtain p(H; k)� p(G; k) = p(H � vr � vt; k� 1)� p(G� vr � vs; k� 1)
since H � ert and G� ers are isomorphic. The graph G� vr � vs is a subgraph of
H � vr � vt and therefore p(H; k) is not smaller than p(G; k) for all values of k and
is greater than p(G; k) for at least k = 2. �

In order to prove Theorem 1 it remains to compare the m-greatest graphs
from particular classes.

Lemma 9.

1. G1
n � G2

n; n � n�1 = 10; 6. G8
n � G6

n; n � n�6 = 8;
2. G4

n � G3
n � G2

n; n � n�2 = 7; 7. G11
n � G10

n � G9
n; n � n�7 = 11;

3. G5
n � G9

n; n � n�3 = 14; 8. G12
n � G9

n; n � n�8 = 14;
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4. G6
n � G5

n; n � n�4 = 9; 9. G13
n � G9

n; n � n�9 = 11;
5. G7

n � G5
n; n � n�5 = 9; 10. G14

n � G10
n ; n � n�10 = 10:

All the relations 1.{ 10. are strict.

Proof. Each relation can easily be veri�ed for n = n�i and n = n�i + 1.
According to Lemma 4, the relations 1. { 10. hold then for any n � n�i , i =
1; . . . ; 10. �

Lemma 10. For n � 12, the graphs G2
n and G9

n are m-incomparable.

Proof. (a) It is easy to see that p(G2
n; 2) = p(G9

n; 2). In addition, p(G2
n; 3) =

p(G9
n; 3) + 1. For n = 12 and 13 this latter relation can be veri�ed by direct

calculation. Its general validity follows by induction using Lemma 3, p(Gi
n; 3) =

p(Gi
n�1; 3) + p(Gn�2; 2) for both i = 2 and 9. Hence, we have p(G2

n; k) > p(G9
n; k)

for k = 3. (b) By a fully analogous inductive argument one can verify that for
n � 12, p(G2

n; n=2) = p(G9
n; n=2) � 3 if n is even, whereas P (G2

n; (n � 1)=2) =
p(G9

n; (n� 1)=2)� (3n� 35)=2 if n is odd. Hence we have p(G2
n; k) < p(G9

n; k) for
k = [n=2].

Therefore G2
n#G

9
n for n � 12. �

By Lemmas 7 { 10, Theorem 1 is proved for n � 14. The parts of Theorem
1 related to smaller values of n have been established by a computer search which
will be described in the subsequent section.

This completes the proof of Theorem 1.

4. Computer Search. The computer search has been performed by the
interactive programming system \GRAPH" for the classi�cation and extension of
knowledge in the �eld of graph theory [1, 2]. In order to �nd maximal graphs for
the classes 1 to 14 we had to determine the numbers p(G; k), k = 1; 2; . . . for a
few hundred graphs with at most 15 vertices. It was not clear at the beginning
how many graphs we have to consider and how many vertices they have. It was
not even clear whether m-greatest graphs exist at all in the classes considered.

The graphs were introduced into the system \GRAPH" via a graphical display
and a light pen. The graphs were ordered so that the next graph was always a slight
modi�cation of the previous one (inserting or deleting few edges and/or vertices)
and this modi�cation was also performed by the light pen. By a special command
the numbers p(G; k) are obtained for obtained for the graph de�ned previously.

The search was organized in a few sessions of one hour, each session being
suÆcient to elaborate several dozens of graphs. The results of one session were the
basis for de�ning a set of graphs for the next session. Each time we used several
auxiliary results on the numbers p(G; k) (some of which are included in this paper)
in order to eliminate some graphs and therefore shorten the computer search.
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Fig. 3
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Fig. 5 Fig. 6


