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POSITIVE LOGIC WITH DOUBLE NEGATION

Milan Bo�zi�c

Abstract. The fragment of the Heyting propositional calculus which contains double
negation but does not contain negation is axiomatized by treating double negation as a necessity
operator. The resulting system is shown sound and complete with respect to a speci�c class of
Kripke-style models with two accessibility relations, one intuitionistic and the other modal.

0. Introduction. In this paper we shall investigate an intuitionistic propo-
sitional calculus Hdn�+ for which we shall prove that it is the positive fragment
of the system Hdn� introduced in K. Do�sen's paper [1]. As �A $ ::A� holds
in Hdn�, the modal operator � can be understood as double negation, so Hdn�+

is an answer to the problem, posed in [1], of the axiomatization of the fragment of
the Heyting propositional calculus H which contains double negation but doesn't
contain negation. In other words. since the positive fragment of H is also known
as \positive logic", we shall axiomatize positive logic extended with intuitionistic
double negation.

1. The syntax of Hdn�+. Hdn�+ is the propositional calculus in the
language L+

�
= f!;^;_;�g over the set of variables V = fpij i 2 !g with the

axiom-schemata
H1 A! (B ! A)
H2 (A! (B ! C))! ((A! B)! (A! C))
H3 A! (B ! A ^ B)
H4 A ^ B ! A
H5 A ^ B ! B
H6 A! A _ B
H7 B ! A _B
H8 (A! C)! ((B ! C)! (A _B ! C))
dn1 �(A! B)! (�A! �B)
dn2 A! �A
dn3 �(A _ (A! B)
dn5 �(�A! A)
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and the schema-rule

MP
A;A! B

B
:

The systemHdn�, mentioned in the introduction, is the expansion ofHdn�+

in the language L� = f!;^;_;�;:g with the axiom-schemata
H9 (A! B)! ((A! :B)! :A)
H10 :A! (A! B)
dn4 :�:(A! A).

Note that our dn3 is not the same as dn3 in [1] where Hdn� was �rst intro-
duced (�(((A ! B) ! A) ! A) stands there for dn3) but those two formulas are
equivalent in Hdn�+ � dn3. Also, in Hdn�, dn5 becomes redundant.

2. Hdn�+ frames and models. The semantics of the intuitionistic modal
calculi has been investigated in [2]. We shall use the terminology and basic results
of that paper.

De�nition 1. H = hX;RI ; RM i is and Hdn�+ frame i�

(i) X 6= ;, RI � X2 is reexive and transitive, RM � X2, and

(ii) the universal closures of the following �rst-order formulas hold in H:

(1) xRIy and yRMz ) 9t(xRM t and tRIz)

(2) xRMy ) xRIy

(3) xRMy and yRIz ) zRIy

(5) xRMy and yRIz ) 9t(zRM t and tRIz)

domH
def
== X , KK(Hd�+)

def
== fHjH is an Hdn�+ frame g.

As (1) holds, any Hdn+ frame is an Hdn� frame (see [2]). Not that an
Hdn� frame from [1] is an Hdn�+ frame which satis�es the universal closure of
the �rst-order formula

(4) 9y xRMy:

In Hdn� frames (5) becomes redundant. It is easy to prove, by a simple coun-
terexample, that the class of all Hdn� frames K(Hdn�) is a proper subclass of
K(Hdn�+).

De�nition 2. M = hH; vi is an Hdn�+ model i�

(i) H is an Hdn�+ frame, and

(ii) valuation v maps domH into PV such that

(her) xRIy ) v(x) � v(y)

holds for all x; y 2 domH.

FrM
def
== H; domM

def
== dom FrM;
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M(Hdn�+)
def
== fMjM is an Hdn�+ modelg, val M

def
== v.

Validity of formulas in a point of a model, in a model and in a frame are
de�ned as in [2], but for the reader not acquainted with that paper we will repeat
those de�nitions restricted, of course, to the formulas in the language L+

�
. The

set of formulas in some language L will be denoted by For (L). Let us note that
the following de�nition is applicable to any class of models satisfying at least the
universal closure of the formula (1).

De�nition 3. Let A 2 For (L+
�
), M 2M(Hdn�+) and x 2 domM.

The predicate Formula A holds in the point x of the Hdn�+ model M
(hM; xi j= A, or if there is no ambiguity, only x j= A) is de�ned by recursion
on the structure of the formula A. The axioms of this recursion are:

(pi) A = pi, x j= pi iff pi 2 valM(x)
(^) A = B ^ C, x j= B ^ C iff x j= B and x j= C
(_) A = B _ C, x j= B _ C iff x j= B or x j= C
(!) A = B ! C, x j= B ! C iff 8y(xRIy and y j= B ) y j= C)
(�) A = �B, x j= �B iff 8y(xRMy ) y j= B)

A formula A is true in the model M(M j= A) i� (8x 2 domM)x j= A

A formula A is valid in the frame H(H j= A) i� 8M(FrM = H )M j= A)

A formula A is valid in the class of frames K(K j= A) i� 8H(H 2 K ) H j= A)

For the sake of completeness let us mention that j= for : is (in all intuitionistic
frames) de�ned by:

(:) A = :B; x j= :B iff 8y(xRIy ) not y j= B):

It is understood that the logic of the meta-connectives i� (alternatively: ,),
and or, not, ), 8 and 9 is classical and that the domain of the quanti�ers 8 and 9
when they stand in front of the individual variables x; y; z; t; . . . is domM.

The property (her) xRIy ) v(x) � v(y) of the valuation can be transformed
(because of the de�nition above) into xRIy ) (x j= pi ) y j= pi). This properly
extends to all formulas (for a proof see (2); only property (1) of Hdn�+ frames
matters) namely the following holds:

Intuitionistic Heredity (Her). For any A 2 For (L+
�
);M 2M (Hdn�+)

and x; y 2 domM

(Her) xRIy ) (x j= A) y j= A):

3. Completeness of Hdn�+. In this section we are going to prove our
main theorem, which states that

Theorem 1. Hdn�+ ` A, K(Hdn�+) j= A.

First, we are going to prove the following
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Soundness theorem for Hdn�+. Hdn�+ ` A) K(Hdn�+) j= A.

In proving this we will use the following lemma:

Lemma 1. For any H� frame H,

1.1 H j= �(A _ (A! B)), H j= 8x8y8z(xRMy and yRIz ) zRIy)

1.2 H j= �(�A! A), H j= 8x8y8z(xRMy and yRz )

) 9t(zRM t and tRIz)):

Proof. Because of De�nition 3, when proving H j= A for some propositional
formula A, it suÆces to prove x j= A for an arbitrary x 2 domH for an arbi-
trary model (valuation) on H. In the following proofs we are omitting universal
quanti�ers which range over whole formulas.

1.1 (() Suppose H j= 8x8y8z (3) and let M be model on H and x 2 domH.

x j= �(A _ (A! B))

i� xRMy ) (y j= A or y j= A! B)

i� xRMy and (not y j= A)) (yRIz and z j= A) z j= B)

i� xRMy and (not y j= A) and yRIz and z j= A) z j= B.

The last formula is true since its antecedent is false: xRMy and yRIz implies (by
(3)) zRIy which, as z ` A, implies (by Her) y ` A which contradicts not y j= A.

()) Suppose not H j= 8x8y8z (3); then there exist a; b; c 2 domH such that

aRM b and bRIc and (not cRIb):

De�ne v : domH ! PV with p0 2 v(t), (not tRIb; p1 62 v(t) and pi 2 v(t) for all
i 6= 0; 1. It is easy to prove that v is a valuation and that in the model hH; vi not
a j= �(p0 _ (p0 ! P1)) as aRM b and not b j= p0 and not b j= p0 ! p1 (as bRIc and
c j= p0 and not c j= p1).

1.2 (() Suppose H j= 8x8y8z (5) and let M be a model on H and x 2 domM.

x j= �(�A! A)

i� xRMy ) y j= �A! A

i� xRMy and yRIz and z j= �A) z j= A.

The last formula is true since xRMy and yRIz implies (by (5)) zRM t and
tRIz for some t, for which, as z j= �A, we have t j= A, and, as tRIz, by Her, z j= A
also.

()) Suppose not H j= 8x8y8z (5), then there exist a; b; c 2 domH such that

aRMb and bRIc and 8t(cRM t) not tRIc):

De�ne v : domH ! PV with p0 2 v(t), not tRIc and pi 2 v(t) for all i 6= 0. It is
easy to prove that v is a valuation and that in the model hH; vi, not a j= �(�p0 !
p0) as aRMb, and not b j= p0 ! p0 as bRIc and c j= �p0 (as cRM t implies not tRIc
i.e. t j= p0), and not c j= p0.
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The proof of the theorem for Hdn�+ is complete now as the soundness for
the schemata H1 { H8 and the rule MP follows from any standard proof of the
soundness of the Heyting calculus H with respect to the Kripke frames for H: our
Hdn�+ frames are a special kind of those (see, for example, [3]); the soundness for
the scemata dn1 and dn2 follows from [1] where it has been proved that dn1 (dn2)
holds in a H� frame i� in this frame the universal closure of (1) ((2)) holds which
is the case; the soundness of the schemata (3) and (5) follows from Lemma 1.

To prove Theorem 1 we have to prove K(Hdn�+) j= A ) Hdn�+ ` A.
For that we use the technique of canonical frames and models which has been
introduced in [2]. First, we are de�ning the basic notions.

De�nition 4. Let x; y � For (L+
�
) and A;B 2 L(L+

�
).

x j|||
Hdn�+

A i� there is a proof for A in Hdn�+ [ x.

x is Hdn�+ deductively closed i� 8A(x j|||
Hdn�+

A) A 2 x).

x is prime i� 8A8B(A _ B 2 x) A 2 x or B 2 x).

x is consistent i� not 8Ax j|||
Hdn�+

A.

x is Hdn�+ nice i� x is prime, consistent and Hdn�+ deductively closed.

Hc(Hdn�+)
def
== hXc(Hdn�+); Rc

I
; Rc

M
i is canonical Hdn�+ frame i�

(i) Xc(Hdn�+) is the set of all Hdn�+ nice sets of formulas

(ii) xRc

I
y , x � y

(iii) xRc

M
y , x� � y, where x�

def
== fAj�A 2 xg.

M(Hdn�+)
def
== hHc(Hdn�+); vci is the canonical Hdn�+ model i�

vc(x) = x \ V for all x � Xc(Hdn�+):

Lemma 2. Hc(Hdn�+) and Mc(Hdn�+) are an Hdn�+ frame and model.

Proof. vc is obviously a valuation as Rc

I
coincides with set-theoretic inclusion.

It remains to prove that Hc(Hdn�+) is an Hdn�+ frame. The relation Rc

I
(�) is

reexive and transitive, (1) is a trivial set-theoretic consequence of the de�nition
of the relations Rc

I
and Rc

M
, and (2) is proved (in [1]) to be a consequence of dn2.

It remains to prove that Xc(Hdn�+) 6= ; and that in the canonical frame (3) and
(5) hold. Xc(Hdn�+) 6= ; because the set of all theorems of Hdn�+ is nice, since
it is deductively closed by de�nition consistent, since it is a subset of the set of all
theorems of the Heyting calculus H (if � is interpreted as ::), and it is prime, as
can be shown by standard methods.

xRMy and yRIz ) zRIy in a canonical frame becomes(3)

x� � y and y � z ) z � y:

Suppose x� � y and y � z and let A 2 z. We prove that A 2 y. As z is consistent,
there is a B such that B 62 z. As �(A _ (A ! B)) is a theorem of Hdn�+, it



26 Milan Bo�zi�c

belongs to x and, consequently, A _ (A ! B) 2 x� � y. As y is prime A 2 y or
A ! B 2 y. If A ! B 2 y, because if y � z, A ! B 2 z which, with A 2 z, gives
B 2 z; but B 62 z. So A 2 y.

(5) xRMy and yRIz ) 9t(zRM t and tRIz)

in the canonical frame becomes

x� � y andy � z ) 9t(z� � t and t � z):

It suÆces to prove x� � z ) z� � z.

Suppose x� � z and let A 2 z�, i.e. �A 2 z. Because of dn5 �(�A! A) 2 x
and �A! A 2 x� � z which, together with �A 2 z implies A 2 z.

Lemma 3. For any A 2 For (L+
�
) and any Hdn�+ nice set of formulas x



M

c(Hdn�+); x
�
j= A, A 2 x:

Proof. As in the appropriate proof for canonical models of the calculus HK�
in [2]. Note that HK� contains negation but as the proof goes by induction on
the number of connectives in the formula A, the step (:) should be simply omitted.
The steps in the proof for the positive connectives (!, _, _,�) rely only on the
schemata H1 { H8, dn1 and rule MP { and this is a part of the calculus Hdn�+.

Because of previous lemmata:

not Hdn�+ ` A) 9x(x is Hdn�+ nice and A 2 x):

The implication above is true if we take the set of theorems of Hdn�+ for x. Next
we have

not Hdn�+ ` A) 9x


M

c(Hdn�+); x
�
6j= A (by Lemma 3)

) K(Hdn�+) 6j= A (by Lemma 2).

4. Hdn�+ is the positive fragment of Hdn�. In order to prove this we
introduce a special kind of expansions of Hdn�+ frames and models.

De�nition 5. Let H = hX;RI ; RM i be a structure with two binary relations

RI and RM on a nonempty domain X and let 1 62 X . H
def
==



X;RI ; RM

�
is a

closure of H i�

(i) X = X [ f1g

(ii) xRIy , xRIy or (9z(xRIz and not 9tzRM t) and y = 1) or x = y = 1

(iii) xRMy , xRM Iy or (xRI1 and y = 1).

Lemma 4. The closure of an Hdn�+ frame is an Hdn� frame.

Proof. We are going to prove that in H, where H is an Hdn�+ frame, the
relation RI is reexive and transitive and (1) { (4) hold. (5) is redundant as it
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follows from (4). Furthermore, as RI=X
2 = RI and RM=X2 = RM , reexivity and

transitivity of RI , as well as (1), (2) and (3) are to be proved only in case when
at least one of the free variables takes the value 1; in other cases they are already
true in H.

First, we list some trivial but useful properties of RI , and RM .

(I1) 1RIx, x = 1
(I2) xRI1, x = 1 or 9z(xRIz and (not 9tzRM t))
(M1) 1RMx, x = 1
(M2) xRM1, xRI1.

RI is reexive: xRIx, xRIx or x = 1, which is true.

RI is transitive xRIy and yRIz ) xRIz.

Suppose xRIy and yRIz. If x = 1, then by (I1) y = z = 1, so xRIz is true. If
y = 1 then, by (I1) again, z = 1, so xRIz reduces to xRIy. Suppose x 6= 1, y 6= 1
and z = 1; then

xRIy and yRIz ) xRIy and yRI1

) xRIy and 9z(yRIz and (not 9tzRM t)) (By (I2))

) 9z(xRIz and (not 9tzRM t)) (as RI is transitive)

) xR 1 (by (I2) again)

) xRIz (as z = 1):

xRIy and yRMz ) 9t(xRM t and tRIz):(1)

Suppose xRIy and yRMz. If x = 1, then, by (I1), y = 1 and, by (M1), z = 1.
It suÆces to take t = 1. If y = 1, then, by (M1), z = 1 and xRIy reduces to xRI1.
But by (M2) the last is equivalent with xRM1. As z = 1, we have 1RIz (by (I1)).
So, it suÆces to take t = 1. If z = 1, then yRMz reduces to yRM1 and, by (M2),
to yRI1. But, as we have proved, RI is transitive; so xRIy and yRI1 implies xRI1
and, again by (M2), xRM1. As z = 1, it suÆces to take t = 1.

(2) xRMy ) xRIy:

Suppose xRMy. If x = 1, xRMy reduces to 1RMy; so, by (M1), y = 1 and
xRIy holds. If y = 1, xRMy reduces to xRM1 and, by (M2), to xRI1. So xRIy
holds again.

(3) xRMy and yRIz ) zRIy:

Suppose xRMy and yRIz. If x = 1, then y = 1 by (M1) and z = 1 by (I1).
So, zRIy. If y = 1, then z = 1 by (I1), so zRIy again. If x 6= 1, y 6= 1 and z = 1
the antecedent of (3) reduces to

xRMy and 9z(yRIz and (not 9tzRM t)) (by (I2)):
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But the last formula is a contradiction as by (5), x; y; z being in the former Hdn�+

frame, xRMy and yRIz implies 9tzRM t. As the antecedent of formula (3) is false
in the case z = 1, x 6= 1, y 6= 1, this formula is true in that case.

Note that this is the only place in the proof where condition (5) is used.

(4) 9yxRMy:

If x = 1, (5) reduces to 9y1RMy which is true for y = 1 by (M1). Formula (5)
doesn't necessarily hold in Hdn�+ frames, so it should be checked for x 6= 1. Let
x 6= 1. If 9yxRMy then, because RM � RM , 9yxRMy, also holds. If not 9txRM t,
then, as RI is reexive, xRIx and (not 9txRM t) holds. But that means that
9z(xRIz and (not 9tzRM t)) also holds (take z = x). The last formula implies
xRM1 by (I2) and (M2).

This ends the proof.

De�nition 6. Let M be an Hdn�+ model. M
def
==



FrM; v

�
is a closure of

the model M i� v=domFrM = valM and v(1) = V .

As valM(x) � v(1) for all x 2 domFrM, the following holds:

Lemma 5. The closure of an Hdn�+ model is an Hdn� model.

The following lemma shows that, with respect to positive formulas, Hdn�+

models and their closures have the same properties.

Lemma 6. LetM be an Hdn�+ model and M its closure. Then the following
holds for all A 2 For (L+

�
).

6.1


M; 1

�
j= A

6.2


M; x

�
j= A i� hM; xi j= A, for all x 2 domM.

Proof. We are going to prove 6.1 and 6.2 by induction on the number s(A) of
connectives in the formula A. If s(A) = 0, then A = pi for some i 2 !, so

(pi)A = pi,

M; 1

�
j= pi i� pi 2 v(1) = V , which is true for all i 2 !


M; x
�
j= pi i� pi 2 v(x) = valM(x) (As x 2 domM)

i�


M; x

�
j= pi.

Let s(A) > 0 and let 6.1 and 6.2
def
() Ind Hyp hold for all formulas F such that

s(F ) < s(A). The following may occur:

(^) a = b ^ C,

M; 1

�
j= B ^ C i�



M; 1

�
j= B and



M; 1

�
j= C { true by Ind Hyp


M; x
�
j= B ^ C i�



M; x

�
j= B and



M; x

�
j= C

i� hM; xi j= B and hM; xi j= C (by Ind Hyp)
i� hM; xi j= B _ C.

(_) A = B _ C,

M; 1

�
j= B _ C i�



M; 1

�
j= C or



M; 1

�
j= C { true by Ind Hyp
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M; x

�
j= B _ C i�



M; x

�
j= B or



M; x

�
j= C

i� hM; xi j= B or hM; xi j= C (by Ind Hyp)
i� hM; xi j= B _ C.

(!) A = B ! C

M; 1

�
j= B ! C i� 8y(1RIy and



M; y

�
j= B )



M; y

�
j= C)

i�


M; 1

�
j= B )



M; 1

�
j= C (as 1RIy , y = 1).

The last formula is true as its consequent is true by Ind Hyp.


M; x

�
j= B ! C i� 8y(xRIy and



M; y

�
j= B )



M; y

�
j= C)

i� 8y(xRIy and y 6= 1 and


M; y

�
j= B )



M; y

�
j= C)

and 8y(xRIy and y = 1 and


M; y

�
j= B )



M; y

�
j= C)

i� 8y(xRIy and hM; yi j= B ) hM; yi j= C)
and 8y(xRI1 and



M; 1

�
j= B )



M; 1

�
j= C):

The last step is true by Ind Hyp as y 6= 1 in the �rst conjunct, and the second
conjunct is true as its consequent is true by Ind Hyp. Hence,


M; x

�
j= B ! C i� hM; xi j= B ! C.

(�) A = �B,

M; 1

�
j= �B i� 8y(1RMy )



M; y

�
j= B)

i�


M; 1

�
j= B (as 1RMy , y = 1)

The last formula is true by Ind Hup.


M; x

�
j= �B i� 8y(xRMy )



M; y

�
j= B)

i� 8y(xRMy and y 6= 1)


M; y

�
j= B)

and 8y(xRMy and y = 1)


M; y

�
j= B)

i� 8y(xRMy ) hM; yi j= B)
and 8y(1RM1)



M; 1

�
j= B):

The last step is true by Ind Hyp as y 6= 1 in the �rst conjunct, and the second
conjunct is true as its consequent is true by Ind Hyp. Hence,


M; x

�
j= �B i� hM; xi j= �B.

This ends the proof.

Finally we have:

Theorem 2. K(Hdn�+) j= A, K(Hdn�) j= A, for all A 2 For (L+
�
).

Proof. The ()) part of the proof follows trivially from K(Hdn�) �
K(Hdn�+).

(() We prove the contraposition of the statement. Suppose that A is not valid
in the class K(Hdn�+). Then there exists an Hdn�+ model M and x 2 domM
such that hM; xi 6j= A. By the previous lemma, as x 2 domM,



M; x

�
6j= A. By

Lemma 4, M is an Hdn� model, so A is not valid in the class K(Hdn�).

From Theorem 2 and from [1], where it has been proved that K(Hdn�) j=
A , Hdn� ` A, we, obtain Hdn� ` A , K(Hdn�+) j= A for all A 2 For (L+

�
).
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But from our Theorem 1 we have that K(Hdn�+) j= A , Hdn�+ ` A, so we
have:

Theorem 3. Hdn�+ ` A , Hdn� ` A, for all A 2 For (Lsquare
+) i.e.

Hdn�+ is the positive fragment of Hdn�, and, if � is interpreted as ::, Hdn�+

is the positive fragment of the Heyting calculus H with double negation.
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