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POSITIVE LOGIC WITH DOUBLE NEGATION
Milan Bozié

Abstract. The fragment of the Heyting propositional calculus which contains double
negation but does not contain negation is axiomatized by treating double negation as a necessity
operator. The resulting system is shown sound and complete with respect to a specific class of
Kripke-style models with two accessibility relations, one intuitionistic and the other modal.

0. Introduction. In this paper we shall investigate an intuitionistic propo-
sitional calculus HdnO% for which we shall prove that it is the positive fragment
of the system HdnO introduced in K. DoSen’s paper [1]. As OA + ——A~ holds
in HdnO, the modal operator [0 can be understood as double negation, so Hdn*
is an answer to the problem, posed in [1], of the axiomatization of the fragment of
the Heyting propositional calculus H which contains double negation but doesn’t
contain negation. In other words. since the positive fragment of H is also known
as “positive logic”, we shall axiomatize positive logic extended with intuitionistic
double negation.

1. The syntax of Hdnd". Hdn[7T is the propositional calculus in the

language L = {—,A,V,0O} over the set of variables V = {p;|i € w} with the
axiom-schemata

H1 A— (B—A)

H2 (A->(B—-C) = ({(A—>B)— (A—=0))
H3 A— (B— AAB)

H4 AANB— A

H5 AANB— B

H6 A—-AVB

H7 B—AvVB

HS A—-C)-»(B—-C)— (AvB —(0))
dnl 0O(A - B) —» (0A —» OB)

dn2 A—0OA

dn3 O(AvV (A — B)

dn’ O(0A — A)
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and the schema-rule
A A— B

MP
B

The system Hdn[J, mentioned in the introduction, is the expansion of Hdn[d™
in the language L = {—, A, V, 0, =} with the axiom-schemata

H9 (A— B) = ((A— —B) » —4)
H10 -A— (A— B)
dn4 —ID—I(A — A)

Note that our dn3 is not the same as dn3 in [1] where HdnO was first intro-
duced (O(((A — B) — A) — A) stands there for dn3) but those two formulas are
equivalent in HdnO" — dn3. Also, in Hdn, dn5 becomes redundant.

2. HdnO" frames and models. The semantics of the intuitionistic modal
calculi has been investigated in [2]. We shall use the terminology and basic results
of that paper.

Definition 1. H = (X, Ry, Ryr) is and HdnOm frame iff
(i) X #0, Ry C X? is reflexive and transitive, Ry C X2, and
(ii) the universal closures of the following first-order formulas hold in #:
(1) zRry and yRyrz = t(xRypt and tRrz)
(2) tRymy = xRy
(3) zRyy and yRyz = zRyy

(5) zRyy and yRyz = Jt(zRyt and tR;z)

domH & X, KK (HdO) 22 {3|# is an HdnO* frame }.

As (1) holds, any Hdn*t frame is an HdnO frame (see [2]). Not that an
HdnO frame from [1] is an HdnO" frame which satisfies the universal closure of
the first-order formula

(4) Jdy zRuy.
In HdnO frames (5) becomes redundant. It is easy to prove, by a simple coun-
terexample, that the class of all HdnO frames K(HdnO) is a proper subclass of
K (HdnO").
Definition 2. MM = (H,v) is an HdnO" model iff
(i) H is an HdnO" frame, and
(i) valuation v maps dom H into PV such that
(her) zRry = v(z) Cou(y)
holds for all z,y € dom H.

Frot 22 dom9m 2 dom From,
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M(HdnO+) 2L (990 is an HdnO* model}, val 0t 2L o,

Validity of formulas in a point of a model, in a model and in a frame are
defined as in [2], but for the reader not acquainted with that paper we will repeat
those definitions restricted, of course, to the formulas in the language LE. The
set of formulas in some language L will be denoted by For (L). Let us note that
the following definition is applicable to any class of models satisfying at least the
universal closure of the formula (1).

Definition 3. Let A € For (L), M € M(HdnO") and = € dom M.

The predicate Formula A holds in the point = of the HdnOT model 9
((M,z) = A, or if there is no ambiguity, only z = A) is defined by recursion
on the structure of the formula A. The axioms of this recursion are:

(i) A=pi, T = pi iff  pi € valM(z)

(A) A=BAC, z=BAC iff zEBand x=C

(V) A=Bv(C, z=BVC iff zEBorzEC

() A=B->C, z]=B—=C iff Vy(@Rry and yl=B=ykEC)

() A=0B, zEOB  iff Yy(Ruy=y = B)

A formula A is true in the model MM = A) iff (Vz € domM)z = A
A formula A is valid in the frame H(H |= A) iff VI(Fr =H = N |= A)
A formula A is valid in the class of frames K(K |= A) iff VH(He K = H E A)

For the sake of completeness let us mention that |= for - is (in all intuitionistic
frames) defined by:

(n) A=-B, zE-B iff Yy(zRry = not y k= B).

It is understood that the logic of the meta-connectives iff (alternatively: <),
and or, not, =, V and 3 is classical and that the domain of the quantifiers V and 3
when they stand in front of the individual variables x,y, z,t, ... is dom9Mn.

The property (her) zRry = v(z) C v(y) of the valuation can be transformed
(because of the definition above) into zR;y = (z = p; = y = pi). This properly
extends to all formulas (for a proof see (2); only property (1) of HdnO* frames
matters) namely the following holds:

INTUITIONISTIC HEREDITY (Her). For any A € For(L}), M € M (HdnO")
and x,y € dom M

(Her) TRy = (r E A=y A).

3. Completeness of HdnOt. In this section we are going to prove our
main theorem, which states that

THEOREM 1. HdnOt F A & K(HdnO") = A.

First, we are going to prove the following
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SOUNDNESS THEOREM for HdnOt. HdnO" - A = K(HdnO") = A.

In proving this we will use the following lemma:

LEMMA 1. For any HO frame H,
1L1HEDOAV(A— B)) & H EYaVyVz(zRyy and yRrz = zRry)
1.2 H =O0A - A) & H |=VYaVyVz(xRyy and yR, =
= Jt(zRpt and tRrz)).

Proof. Because of Definition 3, when proving H = A for some propositional
formula A, it suffices to prove z |= A for an arbitrary x € dom# for an arbi-
trary model (valuation) on 7. In the following proofs we are omitting universal
quantifiers which range over whole formulas.

1.1 («<=) Suppose H |= VaVyVz (3) and let M be model on H and = € dom H.
zEDO(AV (A - B))

if tRyy = (yEAoryl=A— B)

iff xkRyy and (noty = A) = (yRrz and z = A= z |E B)

iff xkRyy and (noty = A) and yRrz and z = A = z |E B.

The last formula is true since its antecedent is false: zRyy and yR;z implies (by

(3)) zR;y which, as z + A, implies (by Her) y - A which contradicts not y = A.
(=) Suppose not H = VzVyVz (3); then there exist a,b,c € dom H such that

aRyb and bRrc and (not cRpb).

Define v : dom H — PV with py € v(t) & (not tRrb,p1 € v(t) and p; € v(t) for all
i # 0,1. It is easy to prove that v is a valuation and that in the model (#,v) not
al=0(poV (po — P1)) as aRpyb and not b = pg and not b = po — p1 (as bRyc and
¢ = po and not ¢ |= py).
1.2 («=) Suppose H |= VaVyVz (5) and let M be a model on H and = € dom M.
z EO0OA - A)

if tRyy >y ETOA— A
iff tRyy and yRyz and z |EOA = z E A.

The last formula is true since xRy and yRyz implies (by (5)) zRpt and

tR;z for some t, for which, as z | OA, we have t = A, and, as tRyz, by Her, z = A
also.

(=) Suppose not H |= VaVyVz (5), then there exist a,b,c € domH such that
aRyb and bRrc and Yt(cRyt = not tRyc).

Define v : dom’H — PV with py € v(t) & not tRrc and p; € v(t) forall i #0. It is
easy to prove that v is a valuation and that in the model (H, v), not a = O(Opy —
po) as aRprb, and not b = py — po as bRyc and ¢ = Opyp (as cRrt implies not tRyc
i.e. t =po), and not ¢ = po.
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The proof of the theorem for HdnO™" is complete now as the soundness for
the schemata H1 — H8 and the rule MP follows from any standard proof of the
soundness of the Heyting calculus H with respect to the Kripke frames for H: our
HdnO* frames are a special kind of those (see, for example, [3]); the soundness for
the scemata dnl and dn?2 follows from [1] where it has been proved that dnl (dn2)
holds in a HO frame iff in this frame the universal closure of (1) ((2)) holds which
is the case; the soundness of the schemata (3) and (5) follows from Lemma 1.

To prove Theorem 1 we have to prove K(HdnO") E A = HdnO% + A.
For that we use the technique of canonical frames and models which has been
introduced in [2]. First, we are defining the basic notions.

Definition 4. Let z,y C For (L) and A, B € L(L).
A iff there is a proof for A in HdnOt U z.

b

dnd+
x is HdnO% deductively closed iff VA(x IEHA = A€ux).

x is prime iff VAVB(AVB e€x = A€z or BE€ ).

x is consistent iff not VAx A.
ﬁ lganJr

x is HdnO™ nice iff = is prime, consistent and HdnO" deductively closed.

HE(HdnOT) ot (X¢(HdnO"), RS, RS,) is canonical HdnO™" frame iff

(i) X¢(HdnO%) is the set of all HdnO™ nice sets of formulas
(ii) zRfy ©x Cy

(iii) zRS;y © o C y, where 2z dof {A|0OA € z}.
M(HdnO) def (H¢(HdnOv),vc) is the canonical HdnOv model iff

v(z) =2 NV for all x C X°(HdnO").

LEMMA 2. HE(HdnO") and MM (HdnO") are an HdnO" frame and model.

Proof. v° is obviously a valuation as R coincides with set-theoretic inclusion.
It remains to prove that H(HdnO") is an HdnO" frame. The relation R$(C) is
reflexive and transitive, (1) is a trivial set-theoretic consequence of the definition
of the relations R§ and RS,, and (2) is proved (in [1]) to be a consequence of dn2.
It remains to prove that X¢(HdnO%) # 0 and that in the canonical frame (3) and
(5) hold. X¢(HdnO") # 0 because the set of all theorems of HdnO" is nice, since
it is deductively closed by definition consistent, since it is a subset of the set of all
theorems of the Heyting calculus H (if O is interpreted as ——), and it is prime, as
can be shown by standard methods.

(3) zRyy and yRrz = zRry in a canonical frame becomes
z0Cy and yCz=zCuy.

Suppose 2 Cy andy C z and let A € z. We prove that A € y. As z is consistent,
there is a B such that B ¢ 2. As O(AV (A — B)) is a theorem of HdnO", it
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belongs to x and, consequently, AV (A — B) € g C y. As y is prime A € y or
A—>Bey. If A— B €y, because if y C 2z, A - B € z which, with A € z, gives
Bez;but B¢z So Ae€y.

(5) xRyy and yRrz = t(zRpt and tRrz)
in the canonical frame becomes
20 Cy andy C 2z = Jt(2g Ct and t C 2).

It suffices to prove zg C z = 2 C z.

Suppose zq C z and let A € 2, i.e. OA € z. Because of dnb5 O(OA — A) € x
and JA — A € zg C z which, together with A € z implies A € z.

LEMMA 3. For any A € For(LE) and any HdnO" nice set of formulas ©

(M (HdnO%),z) mA e A€

Proof. As in the appropriate proof for canonical models of the calculus H K[
in [2]. Note that HKDO contains negation but as the proof goes by induction on
the number of connectives in the formula A, the step (=) should be simply omitted.
The steps in the proof for the positive connectives (—, V, V,0) rely only on the
schemata H1 — HS8, dnl and rule MP — and this is a part of the calculus HdnO™T.

Because of previous lemmata:
not HdnO" - A = Jz(x is HdnO nice and A € z).

The implication above is true if we take the set of theorems of HdnO" for . Next
we have
not HdnO" + A = 3z (M°(HdnO%),z) £ A (by Lemma 3)
= K(HdnO") £ A (by Lemma 2).

4. HdnO7V is the positive fragment of HdnO. In order to prove this we
introduce a special kind of expansions of Hdn[O+ frames and models.

Definition 5. Let H = (X, Ry, Ry) be a structure with two binary relations

R; and Rjs on a nonempty domain X and let 1 ¢ X. H def (X,Rr,Ruy) is a

closure of H iff

(i) X =Xu{1}

(ii) zRry < xRy or (3z(zRrz and not ItzRyt) andy=1) orz =y =1
(iii) xRypy < xRy Iy or (xRl and y = 1).

LEMMA 4. The closure of an HdnO1 frame is an HdnO frame.

Proof. We are going to prove that in H, where H is an HdnU+ frame, the
relation Ry is reflexive and transitive and (1) — (4) hold. (5) is redundant as it
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follows from (4). Furthermore, as Rr/X? = Ry and Ry /X? = Ry, reflexivity and
transitivity of Ry, as well as (1), (2) and (3) are to be proved only in case when
at least one of the free variables takes the value 1; in other cases they are already
true in H.

First, we list some trivial but useful properties of Ry, and Rj;.
(11) IEICE Szr=1
(12) zRil & x =1 or 3z(zRrz and (not 3tzRumt))
(M1) IRyr <z =1
Ry is reflexive: xRz & xRz or x = 1, which is true.
Ry is transitive mﬁjy and y}_ﬁz = zR;z.
Suppose zRry and yRyz. If & = 1, then by (I1) y = z = 1, s0 ¢ Ryz is true. If
y = 1 then, by (I1) again, z = 1, so zR;z reduces to zR;y. Suppose ¢ # 1, y # 1
and z = 1; then
tRry and yRiz = xRy and yRrl
= zRry and Jz(yRrz and (not JFtzRpt)) (By (12))
= Jz(zRrz and (not tzRpst)) (as Ry is transitive)

= rR1 (by (I2) again)
= TRz (as z=1).
(1) tRry and yRyz = 3t(xRyt and tRrz).

Suppose xRy and yRyrz. If z = 1, then, by (I1), y = 1 and, by (M1), z = 1.
It suffices to take t = 1. If y = 1, then, by (M1), z = 1 and xRy reduces to zR1.
But by (M2) the last is equivalent with zRj1. As z = 1, we have 1Rz (by (I1)).
So, it suffices to take t = 1. If z = 1, then yRpsz reduces to yRas1 and, by (M2),
to yR;1. But, as we have proved, R; is transitive; so 2Ry and yR;1 implies zR;1
and, again by (M2), zRy1. As z = 1, it suffices to take t = 1.

(2) zRyy = zRry.

Suppose xRyry. If z = 1, Ry reduces to 1 Ryry; so, by (M1), y = 1 and
xRy holds. If y = 1, xRy reduces to zRys1 and, by (M2), to zRr1. So xRy
holds again.

(3) rRyy and yRrz = zRry.

Suppose tRyy and yRrz. If x = 1, then y = 1 by (M1) and z = 1 by (I1).
So, zRyy. If y = 1, then z = 1 by (I1), so zR;y again. If z # 1,y # land z = 1
the antecedent of (3) reduces to

xRyy and 3z(yRrz and (not tzRyt)) (by (12)).
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But the last formula is a contradiction as by (5), z,y, z being in the former HdnO™"
frame, xRy and yR;z implies JtzRpt. As the antecedent of formula (3) is false
in the case z =1, z # 1, y # 1, this formula is true in that case.

Note that this is the only place in the proof where condition (5) is used.
(4) JyzRary.

If z = 1, (5) reduces to Iyl Ry which is true for y = 1 by (M1). Formula (5)
doesn’t necessarily hold in HdnO' frames, so it should be checked for z # 1. Let
x # 1. If yz Ry then, because Ry C Ry, Jyz Ry, also holds. If not Itz Ryst,
then, as Ry is reflexive, xRz and (not FtzRyt) holds. But that means that
Az(zRrz and (not JtzRpt)) also holds (take z = x). The last formula implies
TRy by (I12) and (M2).

This ends the proof.

Definition 6. Let 9 be an HdnOt model. M = def

the model 9 iff 7/dom FrIN = val M and v(1) = V.
As val9M(z) C (1) for all z € dom Fri, the following holds:

(Frim, 6> is a closure of

LEMMA 5. The closure of an HdnO% model is an HdnO model.

The following lemma, shows that, with respect to positive formulas, Hdnd™
models and their closures have the same properties.

LEMMA 6. Let 9 be an HdnO model and O its closure. Then the following
holds for all A € For(L}).

6.1 (M1)=A
6.2 (ﬁ,m) E A iff (M, z) E A, for all x € dom M.

Proof. We are going to prove 6.1 and 6.2 by induction on the number s(A) of
connectives in the formula A. If s(A) = 0, then A = p; for some i € w, so

(M, 1) = ps iff piev(l)=V, which is true for all i € w
(M, z) = p; iff pi € (x) =valM(z) (Asz € dom M)

Let s(A) > 0 and let 6.1 and 6.2 £% Ind Hyp hold for all formulas F such that
s(F) < s(A). The following may occur:
(A) a=bAC,

(M, 1) =EBAC iff (M,1)EB and (M,1) = C - true by Ind Hyp
(M,z) EBAC iff (M,z) EB and (M, z) =C

iff (M, z) EB and (M, z) = C (by Ind Hyp)

iff (M,z) = BVC.

(V) A=BVC,

=
=
=
(M, 1) =EBVC iff (M1)E

C or (M, 1) EC - true by Ind Hyp
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(ﬁ,w) EBvVC iff <ﬁ,w> EB or <ﬁ,w> EC
iff (MaylB  or  (Ma)EC (by Ind Hyp)
iff (M,z) =BVC.
(=) A=B->C . .
(M, 1) EB—C iff Yy(1R;y and (M,y) =B = (M,y) = C)
iff M1YEB=M,1)EC (aslRiy&ey=1).
The last formula is true as its consequent is true by Ind Hyp.

(M,z) =B —C iff Vy(@Rry and (M,y) E B = (M,y) = C)
iff Yy(zRpy and y #1 and <ﬁ,y> = B= (ﬁ,y>
and Vy(zRpy and y =1 and <ﬁ,y> = B= (ﬁ,y>
i Vy(Rey and (O0y) = B = (M,y) = C)
and Vy(zRrl and (M, 1) = B = (M, 1) =O).

C)
C)

The last step is true by Ind Hyp as y # 1 in the first conjunct, and the second
conjunct is true as its consequent is true by Ind Hyp. Hence,
(M,z) =B —C iff (Mz)EDB-—C.
(0) A=10B5, _ o
(M, 1) = 0B iff Vy(1Rary = (M,y) = B) B
iff (sm, 1> =B (as IRyy < y=1)
The last formula is true by Ind Hup.
(M, z) = OB iff  Vy(zRwy = (M,y) = B)

iff  Vy(@Rmy and y #1 =
and Vy(zRyy and y =1= (
)
B).

y) =
y) E

m
m

iff  Vy(xRuy = (M,y) = B
and Vy(1Ry1 = (M, 1) =
The last step is true by Ind Hyp as y # 1 in the first conjunct, and the second
conjunct is true as its consequent is true by Ind Hyp. Hence,
(M, z) =0OB iff (M, z) =0B.
This ends the proof.

Finally we have:
THEOREM 2. K (HdnO%) = A & K(HdnO) | A, for all A€ For (LY).

Proof. The (=) part of the proof follows trivially from K(HdnO) C
K (HdnO").

(<) We prove the contraposition of the statement. Suppose that A is not valid
in the class K(HdnO"). Then there exists an HdnO" model 9 and = € dom 9
such that (9, z) [~ A. By the previous lemma, as ¢ € domM, (M, z) [~ A. By
Lemma 4, 90 is an HdnO model, so A is not valid in the class K (HdnO).

From Theorem 2 and from [1], where it has been proved that K(HdnO) |=
A& HdnOF A, we, obtain HdnO - A < K(HdnO+) = A for all A € For (LY).
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But from our Theorem 1 we have that K(HdnO+) E A & HdnO" - A, so we
have:

THEOREM 3. HdnOt - A & HdnO & A, for all A € For (Lsquare™) i.e.
HdnO% is the positive fragment of Hdn[, and, if O is interpreted as ——, HdnJ™
is the positive fragment of the Heyting calculus H with double negation.
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