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NEGATIVE MODAL OPERATORS IN INTUITIONISTIC LOGIC

Kosta Do�sen

Abstract. Modal operators which correspond to impossibility and non-necessity are inves-
tigated in systems analogous to the modal logic K which are based on the Heyting propositional
calculus. Soundness and completeness are proved with respect to Kripke-style models with two
accessibility relations, one intuitionistic and the other modal. A system where impossibility is
equivalent to intuitionistic negation is also proved sound and complete with respect to speci�c
classes of models with two relations. It is shown how the holding of formulae characteristic for
this system is equivalent to conditions for the relations of the models.

0. Introduction. Let X be a set of \worlds" and R an \accessibility rela-
tion" on X . If x; y 2 X and A is a formula, the conditions for the holding of �A
and �A at x are

x j= �A, 8y(xRy) y j= A); x j= �A, 9y(xRy and y j= A):

Now suppose we have introduced the modal operators �0 and �0 for which we give
the following conditions, where the right-hand sides are obtained by negating the
right-hand sides of the conditions above,

x j= �0A, 9y(xRy and y 6j= A); x j= �0A, 8y(xRy ) y 6j= A):

With classical propositional logic, �0 and �0 do not introduce anything particular-
ly new, since �0A and �0A are de�nable as :�A (or �:A) and :�A (or �:A)
respectively. (Though, of course, they can also be treated as primitive. In fact, �0

was a primitive of the Survey of Symbolic Logic of C.I. Lewis; see [6], pp. 126{128,
where �0 is mentioned too.) However, with intuitionistic propositional logic �0 and
�0 need not be de�nable in this way anymore. It is our purpose in this paper to
investigate the operators �0 and �0 in propositional modal calculuses based on the
Heyting propositional calculus.

In the �rst part we shall consider a system called HK�0 with �0 primitive,
and we shall prove HK�0 sound and complete with respect to Kripke-style models
with two accessibility relations, one intuitionistic and the other modal. In these
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models the modal relation will be as general as possible, and hence HK�0 will
be in the same position as the modal logic K based on the classical propositional
calculus. Models with two relations for intuitionistic modal logics with � or �
primitive were investigated in [1] and [3], and we shall assume that the reader is
acquainted with these two papers { in particular with the �rst. (We also assume
some familiarity with Kripke models for intuitionistic propositional logic, for which
the reader may consult [4], and with Kripke models for modal logics based on
classical propositional logic, for which the reader may consult [2].)

In the second part we shall deal with the system HK�0 with �0 primitive,
which is in a position analogous to that of HK�0. This system can be proved
sound and complete with respect to other classes of models with two relations.
The system with �0 bears a certain primacy not only because �0 is intuitively
more signi�cant (it corresponds to impossibility, whereas �0 corresponds to non-
necessity), but also because �0 is analogous to negation when we compare the
condition given for x j= �0A with the condition for x j= :A. In fact, �0 in HK�0

can be conceived as a kind of negation, weaker than intuitionistic negation.

In the third part of this paper we shall consider brie
y a system with �0

primitive where �0 will be equivalent to intuitionistic negation. We shall show this
system sound and complete with respect to speci�c classes of models of the type
we have mentioned.

1. Review of some terminology and results. In order to make this
paper a little bit more self-contained we shall review brie
y some terminology and
results of [1].

The language L� is the language of propositional modal logic with denumer-
ably many propositional variables, for which we use the schemata p; q; r; p1; . . . , and
the connectives !;^;_;: and � (the connective $ is de�ned as usual in terms of
! and ^, and in formulae ^ and _ bind more strongly than! and$). As schema-
ta for formulae we use A;B; . . . ; A1; . . . , and as schemata for sets of formulae we
use capital Greek letters.

The system HK� is an extension of the Heyting propositional calculus in
L� (axiomatized in a standard way with modus ponens) with

� 1: �A ^�B ! �(A ^ B)

� 2: �(A! A)
R�:

A! B

�A! �B
:

The relation ` in � ` A is de�ned as the usual relation of deducibility from hypothe-
ses using only modus ponens. The expression Cl(�) shall stand for fAj� ` Ag.

A H� frame is hX;RI ; RM i whereX 6= ;, RI � X2 is re
exive and transitive,
RM � X2 and RIRM � RMRI . The variables x; y; z; t; u; v; x1 . . . range over X .
A H� model is hX;RI ; RM ; V i where hX;RI ; RM i is a H� frame and V , called a
valuation, is a mapping from the set of propositional variables of L� to the power
set of X such that for every p, 8x; y(xRIy ) (x 2 V (p)) y 2 V (p))). The relation
j= in x j= A is de�ned as usual, except that for ! and : it involves RI whereas



Negative modal operators in intuitionistic logic 5

for � it involves RM . A formula A holds in a model hX;RI ; RM ; V i i� 8x 2 X ,
x j= A; A holds in a frame Fr(Fr j= A) i� A holds in every model with this frame;
and A is valid i� A holds in every frame. A H� frame (model) is condensed i�
RIRM = RM , and it is strictly condensed i� RIRM = RMRI = RM .

The system HK� is sound and complete with respect to H� models (con-
densed H� models, strictly condensed H� models).

The language L� di�ers from L� only in having � instead of �, and the
system HK� is an extension of the Heyting propositional calculus in L� with

� 1: �(A _ B)! �A _ �B

� 2: :�:(A ! A)
R�:

A! B

�A! �B
:

A H� frame (model) di�ers from a H� frame (model) only in having R�1
I RM �

RMR�1
I instead of RIRM � RMRI . The relation j= involves RM for � and is

otherwise unchanged. A H� frame (model) is condensed i� R�1
I RM = RM , and it

is strictly condensed i� R�1
I RM = RMR�1

I = RM .

The system HK� is sound and complete with respect to H� models (con-
densed H� models, strictly condensed H� models).

The System HK�0

2. The syntax of HK�0. Let the language L�0 be obtained from L� by
replacing� by the modal operator �0, read intuitively as \it is impossible that". We
introduce the propositional calculus HK�0 in L�0 by extending the axiomatization
of the Heyting propositional calculus given in [1] (see section 2; this axiomatization
is given by H1{H10 and MP ) with

�0 1: �0A ^ �0B ! �0(A _ B)

�0 2: �0:(A! A)
R�0:

A! B

�0B ! �0A
:

By a simple induction on the complexity of formulae it can be shown that any
extension S of HK�0 (an extension being closed under the primitive rules of HK�0)
is closed under the rule of replacement of equivalent formulae. It is also easy to
show that the Deduction Theorem holds with respect to `S. We can also show that
the theorems of HK�0 make a conservative, and hence consistent, extension of the
Heyting propositional calculus in L�0 without �0 by a mapping e which replaces
every �0 in a formula by :, and otherwise leaves the formula unchanged { for if
`HK�0 A, then e(A) is provable in the Heyting propositional calculus.

A set of formulae � has the disjunction property i� A_B 2 � implies A 2 �
or B 2 �. A system has this property i� the set of its theorems has this property.
In order to prove that HK�0 has the disjunction property we can use the variant of
Kleene's slash de�ned in [1] modi�ed by taking j�0A,df j:A(,df not 
 A, i.e. not
(` A and jA)). The proof of the following lemma is then an immediate consequence
of the fact that `HK�0 A implies that e(A) is a theorem of the Heyting propositional
calculus in L�0 without �0.
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Lemma 1. HK�0 has the disjunction property.

3. H�0 models. A H�0 frame (model) is de�ned as a H� frame (model)
save that the condition RIRM � RMRI is replaced by RIRM � RMR�1

I . In the
de�nition of j= we add the clause

x j= �0B ,df 8y(xRMy ) y j= B):

Note that the right-hand side of this clause coincides with the right-hand side of
the clause for negation upon replacement of RM by RI . Next we show the following
lemma.

Lemma 2. (Intuitionistic Heredity) In every H�0 model hX;RI ; RM ; V i, for
every x; y 2 X and for every A of L�0, xRIy ) (x j= A) y j= A).

Proof. By induction on the complexity of A. We shall consider only the
case where A is of the form �0B. Suppose xRIy and x j= �0B. Next suppose
that yRMz. With xRMy we obtain xRIRMz, and using RIRM � RMR�1

I , it

follows that xRMR�1
I z, i.e., for some t, xRM t and zRIt. Since x j= �0B implies

8u(xRMu) u 6j= B) we have t 6j= B, which with zRIt and the induction hypothesis
gives z 6j= B. Hence, 8z(yRMz ) z 6j= B), which implies y j= �0B. q.e.d.

Lemma 2 shows in a certain sense the suÆciency of the condition RIRM �
RMR�1

I for making everyH�0 model a model for the Heyting propositional calculus
in the extended language L�0. That this condition is also necessary is shown by
the following lemma.

Lemma 3. Let hX;RI ; RM i be as a H�0 frame save that not RIRM �
RMR�1

I . Then there is a formula A of L�0 and a valuation V such that in
hX;RI ; RM ; V i for some x; y 2 X, xRIy and x j= A and y 6j= A.

Proof. Since not RIRM � RMR�1
I , there are some x; y and z such that

xRIy and yRMz and 8t(xRM t) not zRIt):

Let 8u(u j= p, zRIu). It can easily be checked that there is a valuation such that
this is satis�ed (cf. Lemma 4(i) of [3]. From the last conjunct of (1) it follows that
with this valuation x j= �0p. On the other hand, since zRIz, we have y 6j= �0p.
q.e.d.

In a certain sense we have shown that models with the condition RIRM �
RMR�1

I form the largest class of models with respect to which we can expect to
show that HK�0 is sound and complete. But we also have the following lemmata
which indicate that a proper subclass of N�0 models might be suÆcient.

Lemma 4. In H�0 models, x j= �0A, 8y(xRMR�1
I y ) y 6j= A).

This lemma is easily proved by using z 6j= A , y(yRIz ) y 6j= A), which
follows from Intuitionistic Heredity and the re
exivity of RI . We can also show the
following by using the re
exivity and transitivity of RI .
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Lemma 5. In the de�nition of H�0 frames we can replace the clause RIRM �
RMR�1

I by RIRMR�1
I � RMR�1

I yielding the same class of frames.

So, roughly speaking, out of H�0 models we can make new models by re-
placing the RMR�1

I relation by a new relation R�0 such that in these new models
x j= �0A , 8y(xR�0y ) y 6j= A) and RIR�

0 � R�0. The relation R�0 is the RM

relation of the new models, which validate exactly the same formulae as the old
ones. Since RMR�1

I R�1
I � RMR�1

I , we can further \condense" these models by

making R�0R�1
I � R�0.

4. Soundness and completes of HK�0. In this section we shall prove that
HK�0 is sound and complete with respect to H�0 models, and also with respect
to some speci�c subclasses of H�0 models.

We say that a set of formulae � is nice i� � is consistent, deductively closed
(i.e. Cl(�) � �) and it has the disjunction property. We build the canonical S
frame hXc; Rc

I ; R
c
M i (canonical S model hXc; Rc

I ; R
c
M ; V ci) by taking for Xc the

set of all sets which are nice with respect to the system S, whereas �Rc
I� is de�ned

as � � � (V c(p) is de�ned as f� 2 Xcj p 2 �g). It remains only to de�ne Rc
M .

When S was a system in L� we had in [1]

�Rc
M�,df 8A(A 2 �) �A 2 �):

The implication from left to right in this equivalence amounts to �A 2 � )
(�Rc

M�) A 2 �), which must be satis�ed if we want � j= B , B 2 � to hold for
the canonical S model. Similarly, when S was a system in L� we had in [1]

�Rc
M�,df 8A(A 2 �) �A 2 �):

The implication from left to right in this equivalence amounts to �Rc
M� and A 2

� ) �A 2 �, which must be satis�ed if we want � j= B , B 2 � to hold for the
canonical S model. Now, when we have a system S in L�0, to prove � j= B , B 2 �
for the canonical S model we must have �0A 2 � ) (�Rc

M� ) A 62 �). So, we
shall use the following de�nition

�Rc
M�,df 8A(�

0A 2 �) A 62 �):

If ��0 is short for fAj�0A 2 �g, then the right-hand side of this de�nition amounts
to ��0 \� = ;.

In the following two lemmata S shall stand for any consistent extension of
HK�0 in L�0.

Lemma 6. The canonical S frame (model) is a H�0 frame (model).

Proof. We have that Xc 6= ; since the set of theorems of S is consistent, and
hence by Lemma 6 of [1], which holds in this context too, it can be extended to
a nice set. (The set of theorems of HK�0 is already nice, since it is consistent,
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deductively closed and by Lemma 1 it has the disjunction property.) Since it is
obvious that Rc

I is re
exive and transitive, it remains only to show the following

�Rc
IR

c
M�) 9�(� � � and ��0 \� = ;)

) �0 \� = ;

) �Rc
M�

) �Rc
M (Rc

I )
�1�; by the re
exivity of Rc

I :

So the canonical S frame is a H�0 frame. For the rest see Lemma 7 of [1]. q.e.d.

Note that in the proof of Lemma 6 we have shown that the canonical S frame is a
condensed H� frame.

Lemma 7. In the canonical S model, for every � 2 Xc and for every A,
� j= A, A 2 �.

Proof. By induction on the complexity of A. The basis, when A is p is trivial.
In the induction step we shall consider only the modal case. We have

� j= �0B , 8�(�Rc
M�) � 6j= B)

, 8�(��0 \� = ; ) B 62 �); using the induction hypothesis:

We shall show that �0B 2 �, 8�(��0 \� = ; ) B 62 �). From left to right this
is obvious. For the other direction suppose �0B 62 �. Then we show that there is a
nice � such that ��0 \� = ; and B 2 �.

Let Z = f�j��0 \ � = ; and B 2 � and Cl(�) � �g. First we show that
Cl(fBg) 2 Z. The only diÆcult part of this is to show that ��0 \ Cl(fBg) = ;.
Suppose C 2 ��0 and C 2 Cl(fBg). Then �0C 2 � and fBg ` C, from which we
obtain ` �0C ! �0B using the Deduction Theorem and R�0. But then, since � is
nice, �0B 2 �, and this is a contradiction. Hence, Z is nonempty, and it is easy to
show that it is closed under unions of nonempty chains. So by Zorn's Lemma Z

has a maximal element � with respect to �. We show �rst that

(i) � is consistent.

Otherwise, � ` :(C ! C), and since Cl(�) � �, we have :(C ! C) 2 �. But
since � is nice �0:(C ! C) 2 �, which contradicts ��0 \ � = ; (�0:(C ! C) is
�02). Next we infer immediately from � 2 Z that

(ii) � is deductively closed.

Now suppose that � doesn't have the disjunction property, i.e., for some C and
D, C _ D 2 D and C 62 � and D 62 �. Since � [ fCg and � [ fDg are proper
supersets of �, they cannot be in Z. A fortiori, Cl(�[fCg) and Cl(�[fDg) are
not in Z. This is possible only if for some C1 from the �rst and some D1 from the
second of these last two sets, �0C1 2 � and �0D1 2 �. Since � is nice, using �01 we
obtain �0(C1 _D1) 2 �. On the other hand, we have

� [ fCg ` C1 and � [ fDg ` D1 ) � ` C _D ! C1 _D1

) � ` C1 _D1; since C _D 2 �

) C1 _D1 2 �; by (ii)
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which contradicts ��0 \� = ;. So

(iii) � has the disjunction property

and we can conclude that � is nice. q.e.d.

Now we can prove the soundness and completeness of HK�0 with respect to
H�0 models.

Theorem 1. `HK�0 A, for every H�0 frame Fr, Fr ` A.

The soundness part ()) of this theorem is proved by a straightforward in-
duction on the length of proof of A in HK�0. For the completeness part (() we
proceed analogously to the proof of the (() part of Theorem 1 of [1].

Next we shall consider narrower classes of models with respect to whichHK�0

can be proved sound and complete. We alluded to the possibility of such classes at
the end of section 3. We can prove the following theorem.

Theorem 2. `HK�0 A, for every condensed H� frame Fr, Fr j= A.

, for every condensed H� frame Fr in which

RMR�1
I = RM , Fr j= A.

Proof. From left to right we use the ()) part of Theorem 1. For the other
direction it is enough to establish the following. The canonical HK�0 frame is a
condensed H� frame, as we have remarked after the proof of Lemma 6. To show
that Rc

M (Rc
I)
�1 � Rc

M we have

�Rc
M (Rc

I )�) 9�(��0 \� = ; and � � �

) ��0 \� = ;

) �Rc
M�:

The converse is trivial. q.e.d.

It is easily shown that in condensed H� frames �:A ! �0A is valid, but
�0A! �:A is not.

The System HK�0

5. The syntax of HK�0. Let the language L�0 be obtained from L�

by replacing � by the modal operator �0, read intuitively as \it is not necessary
that". We introduce the propositional calculus HK�0 by extending the Heyting
propositional calculus in L�0 with

�0 1: �0(A ^ B)! �0A _�0B

�0 2: :�0(A! A)
R�0:

A! B

�0B ! �0A
:

As before, any extension S of HK�0 is closed under the rule of replacement of
equivalent formulae and the Deduction Theorem holds with respect to `S . The
mapping e (see section 2) can show that HK�0 is consistent | for if `HK�0 A, then
e(A) is provable in the classical propositional calculus; but this mapping cannot
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show as before that HK�0 is a conservative extension of the Heyting propositional
calculus in L�0 without �0. To show this conservativeness we shall use a model-
theoretical argument (see section 7).

Before proving that HK�0 has the disjunction property we �rst establish the
following lemma.

Lemma 8. No formula of the form �0A is a theorem of HK�0.

Proof. Consider the mapping f which replaces subformulae of the form �0A

by :(A! A) (cf. Lemma 14 of [1]). It is easy to show that `HK�0 A implies that
f(A) is a theorem of the Heyting propositional calculus, from which the Lemma
follows. q.e.d.

Next we use this lemma and the variant of Kleene's slash de�ned in [1] mod-
i�ed by taking j�0A ,df j:A (we could as well have taken j�0A ,df B, where B
is arbitrary) in order to prove that `HK�0 A) jA, which establishes the following
lemma.

Lemma 9. HK�0 has the disjunction property.

6. H�0 models. A H�0 frame (model) is de�ned as a H� frame (model)
save that the condition RIRM � RMRI is replaced by R�1

I RM � RMRI . In the
de�nition of j= we add the clause

x j= �0B ,df 9y(xRMy and y 6j= B):

Next, analogously to Lemmata 2 and 3 we can prove the following lemmata which
establish that the condition R�1

I RM � RMRI is necessary and suÆcient to make
every H�0 model a model for the Heyting propositional calculus in L�0.

Lemma 10 (Intuitionistic Heredity). In every H�0 model hX;RIRM ; V i, for
every x; y 2 X and for every A of L�0, xRIy ) (x j= A) y j= A).

Lemma 11. Let hX;RI ; RM i be as a H�0 frame save that not R�1
I RM �

RMRI . Then there is a formula A of L�0 and a valuation V such that in
hX;RI ; RM ; V i for some x; y 2 X, xRIy and x j= A and y 6j= A.

In a certain sense we have shown that models with the condition R�1
I RM �

RMRI form the largest class of models with respect to which we can expect to
show that HK�0 is sound and complete. But we also have the following lemmata
which indicate that a proper subclass of H�0 models might be suÆcient.

Lemma 12. In H�0 models, x j= �0A, 9y(xRMRIy and y 6j= A).

This lemma is easily proved using z 6j= A , 9y(zRIy and y 6j= A), which
follows from Intuitionistic Heredity and the re
exivity of RI . We can also easily
show the following using the re
exivity and transitivity of RI .

Lemma 13. In the de�nition of H�0 frames we can replace the clause
R�1
I RM � RMRI by R�1

I RMRI � RMRI yielding the same class of frames.
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So, roughly speaking, out of H�0 models we can make new models by re-
placing the RMRI relation by a new relation R�0 such that in these new models
x j= �0A , 9y(xR�0y and y 6j= A) and R�1

I R�0 � R�0. The relation R�0 is the
RM relation of the new models, which validate exactly the same formulae as the
old ones. Since RMRIRI � RMRI we can further \condense", these new models
by making R�0RI � R�0.

7. Soundness and completeness of HK�0. In this section we shall prove
that HK�0 is sound and complete with respect to H�0 models, and also with
respect to some speci�c subclasses of H�0 models.

For a system S in L�0 to prove � j= B , B 2 � for the canonical S model
we must have �Rc

M� and A 62 � ) �0A 2 �. So, we shall de�ne the canonical S
frame (model) as before save that for Rc

M we have

�Rc
M�,df 8A(A 62 �) �0A 2 �):

If ��0 is short for fAj�0A 2 �g and 1 is the set of all formulae of L�0, then the
right-hand side of this de�nition amounts to ��0 [� = 1.

The following two lemmata about consistent extensions S of HK�0 in L�0

are proved analogously to Lemmata 6 and 7.

Lemma 14. The canonical S frame (model) is a H�0 frame (model).

To prove this lemma we have

�(Rc
I)
�1Rc

M�) 9�(� � � and ��0 [� = 1)

) ��0 [� = 1

) �Rc
M�

) �Rc
MRc

I�

which shows also that the canonical S frame is a condensed H� frame.

Lemma 15. In the canonical S model, for every � 2 Xc and for every A;� j=
A, A 2 �.

Proof. By induction on the complexity of A. The basis, when A is p, is trivial.
For the modal case of the induction step we have

� j= B , 9�(�Rc
M� and � 6j= B)

, 9�(��0 [D = 1 and B 62 �); using the induction hypothesis:

We shall show that �0B 2 � , 9�(��0 [ � = 1 and B 62 �). From right to left
this is obvious.

For the other direction suppose �0B 2 �. Let � be the complement of ��0.
This set is nonempty since, � being nice, by �02, :�0(C ! C) 2 � { hence,
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�0(C ! C) 62 �, and hence C ! C 2 �. We show that not � ` B. Otherwise for
some B1; . . . ; Bn 2 �, n � 1 (here we use the nonemptiness of �)

` B1 ^ � � � ^Bn ! B

` �0B ! �0(B1 ^ � � � ^ Bn) ; by using R�0

� ` �0(B1 ^ � � � ^ Bn) ; since �0B 2 �

� ` �0B1 _ � � � _�
0Bn ; by using �01

9i: �0Bi 2 � ; since � is nice:

But then Bi 2 ��0, which contradicts the assumption Bi 2 �. Since not � ` B,
by using Lemma 6 of [1], which holds in this context too, � can be extended to a
nice set � such that B 62 �. q.e.d.

Now we can prove the soundness and completeness of NK�0 with respect to
H�0 models.

Theorem 3. `HK�0 A, for every H�0 frame Fr, Fr j= A.

The proof of this theorem is analogous to the proof of Theorem 1.

Having established this theorem, we can easily show that HK�0 is a conser-
vative extension of the Heyting propositional calculus in L�0 without �0. A Kripke
model falsifying a non-theorem of this calculus is a H�0 model where RM is empty,
modulo some inessential adjustments.

Next we shall consider narrower classes of models with respect to whichHK�0

can be proved sound and complete. We alluded to the possibility of such classes at
the end of section 6. We can prove the following theorem.

Theorem 4. `HK�0 A, for every condensed H� frame Fr, Fr j= A

, for every condensed H� frame Fr in which

RMRI = RM , Fr j= A.

Proof. From left to right we use the ()) part of Theorem 3. For the other
direction it is enough to establish the following. The canonical HK�0 frame is
a condensed H� frame, as we have remarked after Lemma 14. To show that
Rc
MRc

IR � RM we have

�Rc
MRc

I�) 9�(��0 [� = 1 and � � �)

) ��0 [� = 1

) �Rc
M�:

The converse is trivial. q.e.d.

It is easily shown that in condensed H� frames �:A ! �0A is valid, but
�0A! �:A is not.

Although HK�0 has the disjunction property, the intuitively quite plausible
extension of HK�0 with �0(A ^ :A) will not have it. In this extension using
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�01 we obtain �0A _ �0:A. It is easy to show that for a H�0 frame Fr, Fr j=
�0(A _ :A), 8x9y:xRMy, i.e., �0(A ^ :A) (or �0:(A! A)) is equivalent to the
seriality of RM in H�0 frames. In [3] we have seen that both HK� and HK� can
be extended with axioms equivalent to the seriality of RM in appropriate frames
without spoiling the disjunction property. The same holds for HK�0: the schema
with �0 equivalent to the seriality of RM in H�0 frames is :�0(A! A),and HK�0

can be extended with it without spoiling the disjunction property.

Intuitionistic Negation as a Modal Operator

8. The system Hn�0. In this section we shall present a system containing
HK�0 where �0 A is equivalent to :A, and : is intuitionistic negation. Let Hn�0

(\n' stands for \negation") be the system in L�0 obtained by extending the Heyting
propositional calculus with

�0n: �0A$ :A:

It is easy to see that alternativelyHn�0 could be axiomatized by taking the schema-
ta �0A ! (A ! B) and (A ! �0A) ! �0A instead of �0n. It is also easy to see
that HK�0 is a proper subsystem of Hn�0. We can show the following lemma.

Lemma 16. Let Fr be a H�0 frame. Then

Fr j= �0A! :A, RIR
�1
I � RMR�1

I ; F r j= :A! �0A, RMR�1
I � RIR

�1
I :

Proof. For the �rst ()) part suppose that for some x and y, xRIR
�1
I y and

not xRMR�1
I y. Then take a valuation such that 8u(u j= p, not xRMR�1

I u) (cf.
Lemma 4 (iii) of [3]). With this valuation x 6j= �0p! :p. For the second ()) part
we proceed analogously, and it is easy to check the (() parts. q.e.d.

It can easily be shown that if Fr is a H�0 frame

Fr j= �0A! A, Fr j= �0A! (A! B)

, RMR�1
I is re
exive:

Let H�0 frames (models) in which RIR
�1
I = RMR�1

I be called Hn�0 frames (mod-

els). In Hn�0 frames RMR�1
I is re
exive, as we have just remarked, and it is also

symmetric, since RIR
�1
I is symmetric. It can easily be shown that if Fr is a H�0

frame
Fr j= A! �0�0A, RMR�1

I is symmetric:

Next we give the following lemma.

Lemma 17. The canonical Hn�0 frame (model) is a Hn�0 frame (model).

Since we have Lemma 6, it is enough to establish that in the canonical Hn�0

frame Rc
I(R

c
I )
�1 = Rc

M (Rc
I)
�1. For that we use methods applice in the proof of

Lemma 7, and also Lemma 6 of [1], which holds in the present context too. With
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the help of Lemma 17, by procedures applied before we can establish the following
theorem.

Theorem 5. `Hn�0 A, for every Hn�0 frame Fr, Fr j= A

, for every condensed H� frame Fr in which RIR
�1
I = RMR�1

I , Fr j= A

, for every Fr = hX;RI ; RM i in which X 6= ;, RI is re
exive and transitive and
RIR

�1
I = RM , Fr j= A.

For the last equivalence we use the fact that RIR
�1
I = RM implies RIRM =

RM and RMR�1
I = RM , which follows from the re
exivity and transitivity of RI .

This last equivalence is probably the most interesting. It shows that if we take an
ordinary Kripke model for the Heyting propositional calculus hX;RI ; V i where RI

is re
exive and transitive, and take every RIR
�1
I relation to be an RM relation,

we obtain a model in which impossibility amounts to intuitionistic negation. (This
model is also a condensed H� model.) This is connected with the fact that in
ordinary Kripke models x j= :A , 8y(xRIR

�1
I y ) y 6j= A), which is easily shown

with the help of Intuitionistic Heredity and the re
exivity of RI . It is immediately
seen that the RM relation so de�ned is re
exive and symmetric, but not neces-
sarily transitive, which points towards a certain connection between intuitionistic
negation and the Brouwersche modal logic B (based on the classical propositional
calculus), for which Kripke frames hX;RM i where RM is re
exive and symmetric
are characteristic. Historically, B was connected with intuitionistic negation be-
cause A! :�:�A is provable in B, but the converse is not (see [5], p. 58, fn. 37).
This comment on the third equivalence of Theorem 5 doesn't depend essentially on
assuming for the frames hX;RIi of ordinary Kripke models for the Heyting propo-
sitional calculus that RI is only re
exive and transitive: we could as well have used
narrower classes of frames | like, for example, trees | with the same e�ect.

It is, of course, trivial to show that Hn�0 is also sound and complete with
respect to models with frames hX;RI ; RM i where X 6= ;, RI is re
exive and
transitive and RI = RM . These frames are also condensed H� frames, but in them
RMR�1

I 6� RM . If in H�0 frames RI = RM , then �0 collapses into intuitionistic
negation. On the other hand, if in H�0 frames RI = RM then x j= �0A, x 6j= A

and R�1
I RI � RI from which it follows that �0 collapses into classical negation, RI

is an equivalence relation, and everything reduces to classical logic.
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