THE NOTIONS OF w-NET AND Y-COMPACT SPACE VIEWED UNDER INFINITESIMAL MICROSCOPE

Rade Živaljević

Abstract. Nonstandard analysis of A. Robinson is used to give a nonstandard description of the notion of w-net introduced by H.J. Wu in [6]. This concept leads to the notion of Y-compact space so that [0, 1]-compact spaces are compact in the usual sence while R-compact spaces are E. Hewit's realcompact spaces.

Among typical applications of A.Robinson's infinitesimal (nonstandard) analysis are constructions of various kinds of completions of topological spaces, algebras, Banach spaces etc. If X is the object under consideration, one usually starts with a subset $A \subset^* X$ of the nonstandard picture of the object X, and defines the completion of X as the set $c(X) := A/\sim$ where \sim is a suitable equivalence relation on the set A. Examples of this kind can be found in almost any book or paper concerning this subject, like A. Robinson [5], W.A.J. Luxemburg and K.D. Stroyan [4], M. Davis [1], W. Henson [3] or J.C. Dyre [2], and they are both standard (e. g. Stone-Čech compactification) and nonstandard (nonstandard hulls of Banach space).

In [6] Hueytzen J. Wu introduced the concept of w-net and used it, among other applications, to state a general form of the Tychonoff Compactness Theorem. Also, this notion leads to the definition of w-complete spaces and w-completions, which seems to be a useful unification and generalization of compactifications and the real-compactification of a Tychonoff space X.

The aim of this note is to give nonstandard characterizations of concepts mentioned above and to use them to discuss some properties of a naturally defined class of Y-compact spaces, for a given Hausdorff space Y. All definitions and concepts of nonstandard analysis used in this paper are standard and can be found in any text on the subject. For a one-page account of the main definitions and principles, it is recommended to the interested reader to see "Non-standard analysis for pedestrians" in [2]. The nonstandard model is assumed to be polysaturated.

AMS Subject Classification (1980): Primary 03 H 05.

Rade Živaljević

1. w-nets versus w-points

Definition 1. (Wu [6]) Let $\mathcal{A} = \{f_i\}_{i \in I}$ be a family of continuous functions on a topological space X. A net $\langle x_m | m \in D \rangle$, where $\langle D, \leq \rangle$ is a directed set, is called a w-net induced by \mathcal{A} if $f_i \langle x_m | m \in D \rangle := \langle f_i x_m | m \in D \rangle$ converges for each $i \in I$.

Definition 2. Let \mathcal{A} be as before. A point $x \in X$ is called *w*-point if for each $i \in I^* f_i(x)$ is near-standard in X_i . The set of all *w*-points is denoted by $W(^*X)$.

PROPOSITION 1. A net $\langle X_m | m \in D \rangle$ in space X is a w-net induced by the family A if and only if x_m is a w-point for all $m \in \inf(^*D)$ and $(\forall i \in I) \ (\forall m, n \in \inf(^*D))^* f_i x_m \approx^* f_i x_n$ where $\inf(^*D) := \{m \in ^*D | (\forall n \in D) \ n \leq m\}$

Proof. The following two equivalences are well-known.

(a) $\langle y_m | m \in D \rangle$ converges iff $(\forall m, n \in \inf(*D))(y_m, y_n \in ns(*X) \text{ and } y_m \approx y_n)$.

(b) $\langle y_m | m \in D \rangle$ has a cluster point in $E = cl(E) \subset X$ iff $\exists m \in inf(*D)$) $(y_m \in ns(*E))$.

As usual m(x) is the monad of $x, ns(*X) := \{y \in X | (\exists x \in X)y \in m(x)\}$ and $y_1 \approx y_2$ means that both y_1, y_2 are in the same monad.

The proposition easily follows from (a).

PROPOSITION 2. (Wu[6]) Let $\mathcal{A} = \{f_i\}_{i \in I}$ be a family of continuous functions f_i on X into Hausdorff spaces X_i such that the topology on X is the initial (weak) topology induced by \mathcal{A} . Let E be a subset of X. The following are equivalent:

- (1) Every w-net in E induced by A has a cluster point in the closure cl(E) of E.
- (2) Every w-net in cl(E) induced by A converges in cl(E).

Proof (nonstandard). $(2) \rightarrow (1)$ is trivial, so let us prove $(1) \rightarrow (2)$. By Proposition 1 and the equivalence (a) of its proof, (2) is equivalent with

(3) every w-point $x \in (clE)$ is near-standard in^*X .

Assume (1). Let $x \in (dE)$ be a *w*-point. Define $\mathcal{D} = \{O | O \subset X \text{ open and } x \in O\}, \langle \mathcal{D}, \supset \rangle$ is a directed set. Obviously $O \cap E \neq \emptyset$ for every $O \in \mathcal{D}$; so let $\langle y_O | O \in \mathcal{D} \rangle$ be a net in E such that $y_O \in O \cap E$ for every $O \in \mathcal{D}$. This net is a *w*-net. Indeed, let for a given $f_i \in \mathcal{A}, z_i = st^*f_i(x) \in X_i$. Then for every open $V \ni z_i, f_i^{-1}V$ is an open set such that $x \in (f_i)^{-1}(V) = (f_i^{-1}V)$. Hence, $f^{-1}V \in \mathcal{D}$, which proves that $\langle fy_O | O \in \mathcal{D} \rangle$ converges to z_i . By (1) $\langle y_O | O \in \mathcal{D} \rangle$ has a cluster point in clE, hence $y_m \in ns(clE)$ for some $m \in inf(*D)$. Let $y \in sty_m$ (we do not assume that X is Hausdorff). From the definition of \mathcal{D} it follows that $\langle ff \in \mathcal{A} \rangle f(x) \approx f(y_m) \approx f(y)$. But, since the topology on X is induced by \mathcal{A} , we see that $x \in m(y)$, which proves that x is near-standard.

The proposition above yields the following version of the Tychonoff Compactness Theorem proved by Wu in [6].

THEOREM 1. Let \mathcal{A} be a family of continuous functions on a topological space X. Then X is compact iff

- (1) f(X) is contained in a compact subset C_f for each $f \in \mathcal{A}$ and
- (2) every w-net induced by \mathcal{A} has a cluster point in X.

Proof. (nonstandard). Let $x \in X$. Condition (1) implies that $f(x) \in ns(C_f)$ for every $f \in A$, hence x is w-point. Condition (2) is by the proof of Proposition 2 equivalent with

(3) every w-point $x \in X$ is near-standard.

So, $x \in ns(*X)$. By the well-known nonstandard characterization of compactness X is compact.

2. w-completing of topological spaces

All definitions in this paragraph are nonstandard versions of definitions taken from the paper of Wu quoted above. Let W(*X) be the set of all *w*-points, i.e., $W(*X) = \{x \in X \mid (\forall f_i \in \mathcal{A})^* f_i(x) \in ns(*X_i)\}$. For $x, y \in W(*X)$, let $x \sim y$ iff $(\forall f \in \mathcal{A})^* f(x) \approx^* f(y)$. Then, $\langle Y, e \rangle$, where $Y = W(*X) / \approx$ and $e: X \to Y$ is the mapping induced by $i: X \to X$ (note that it is not necessarily one-to-one) is called the *w*-transformation of X induced by $\mathcal{A} = \{f_i\}_{i \in I}$. It is clear that every function f_i can be extended to Y by $\overline{f_i}([x]) = st^*f_i(x)$ for $x \in W(*X)$ and $[x] \in Y$. It will be assumed that Y is equipped with the initial topology induced by the family $\overline{\mathcal{A}} = \{\overline{f_i}\}_{i \in I}$ which makes $e: X \to Y$ continuous and e(X) dense in Y. Space Y is a "completion" of X in the following sence.

PROPOSITION 3. (Wu [6]) Every w-net in Y induced by $\overline{\mathcal{A}}$ converges in Y.

Proof (nonstandard). Let $\langle [y_n] | n \in D \rangle$ be an *w*-net in *Y* where $y_n \in W(^*X)$. By saturation we can assume that there exists an internal function $y : ^*D \to ^*X$ such that $(\forall n \in D)y_n = y(n)$. Let $z_i \in Y_i$ be defined by $\lim_{n \in D} st^*f_i(y_n) = z_i$. Let $\mathcal{H}_{i,O} = \{m \in ^*D | f_iy(m) \in ^*O\}$ and $\mathcal{G}_n = \{m \in ^*D | n \leq m\}$ for $i \in I$, *O* is an open neighborhood of z_i and $n \in D$. Since $\lim_{n \in T} \langle st^*f_iy_n \rangle | n \in D \rangle = z_i$ the family

$$\mathcal{U} = \{\mathcal{H}_{i,O} | i \in I \text{ and } O \in \mathcal{B}(z_i)\} \cup \{\mathcal{G}_n | n \in D\}$$

has the finite intersection property. By saturation $\cap \mathcal{U} \neq \emptyset$. So let $m \in \cap \mathcal{U}$. It is easy to see that y(m) must be a *w*-point in *X and that $\langle [y_n] | n \in D \rangle$ converges to y(m).

Definition 3. If $\langle Y, e \rangle$ is the *w*-transformation of the space X such that X is a Hausdorff space equipped with the initial topology induced by \mathcal{A} , then $e: X \to Y$ is an embedding and the *w*-transformation is called *w*-completion of the space X.

The proof of the last proposition in this paragraph is left to the reader.

PROPOSITION 4. The w-completion $\langle Y, e \rangle$ of the Hausdorff space X with respect to the family $\mathcal{A} = \{f_i\}_{i \in I}$ has the following universal property. For any pair $\langle Z, r \rangle$ and family $\mathcal{B} = \{g_i\}_{i \in I}$ such that Z is a Hausdorff space with the initial topology induced by \mathcal{B} , if $r: X \to Z$ is an embedding onto a dense subspace of Z and $(\forall i \in I)g_i \circ r = f_i$, then there exists a unique mapping $j: Z \to Y$ such that $(\forall i \in I)g_i = \overline{f_i} \circ j$.

Definition 4. Let X and Y be two Hausdorff spaces such that the topology on X is induced by the family $\mathcal{A} = \operatorname{Map}(X, Y)$ of all continuous functions from X to Y(X will be referred to as a Y-Tychonoff space). If X coincides with its w-completion w.r.t. family \mathcal{A} , it is called a Y-compact space. Another characterization is the following. A Y-Tychonoff space is Y-compact if $(\forall x \in X)[(\forall f \in \operatorname{Map}(X, Y))^* f(x) \in ns(Y)] \to x \in ns(*X).$

Let us note that R-Tychonoff spaces are Tychonoff spaces in the usual sence, while R-compactness coincides with realcompactness. So it is not surprising that Y-compact spaces share some properties of realcompact spaces.

PROPOSITION 5. Let us assume that the product $\Pi\langle X_i | i \in I \rangle$ of a family of Y-Tychonoff spaces is again a Y-Tychonoff space. Then if X_i is Y-compact for every $i \in I$, $\Pi\langle X_i | i \in I \rangle$ is also a Y-compact space.

Proof. Let $f \in (\Pi\langle X_i | i \in I \rangle)$ be a *w*-point w.r.t. family $\operatorname{Map}(\Pi\langle X_i | \in I \rangle, Y)$. This implies that $(\forall i \in I)(f(i) \text{ is a } w\text{-point in } X_i)$ so, by assumption, let $g \in \Pi\langle Y_i | i \in I \rangle$ has the property $(\forall i \in I)st f(i) = g(i)$. But, the monad of *g is

$$m(^*g) = \{ f \in (\Pi \langle X_i | i \in I \rangle) | (\forall i \in I)g(i) \approx f(i) \},\$$

hence f is near-standard.

COROLLARY. Products of realcompact spaces are realcompact.

REFERENCES

- [1] M. Davis, Applied Nonstandard Analysis, John Wiley & Sons, New York, 1977.
- [2] J. C. Dyre, Non-standard Characterizations of Ideals in $C(\mathbf{B})$, Math. Scand. 50(1982),
- [3] C. W. Henson, Nonstandard Hulls of Banach Spaces, Israel J. Math. 25 (1976) 108-144.
- [4] W. A. J. Luxemburg, K. D. Stroyan, Introduction to the Theory of Infinitesimals (Pure and Applied Mathematics 72), Academic Press, New York, 1976.
- [5] A. Robinson, Non-standard Analysis, North-Holland, Amsterdam 1966.
- [6] H. J. Wu, The Generalizations of Tychonoff, Stone-Weierstrass Theorems, Compactifications and the Realcompactification (too appear).

Matematički institut Knez-Mihailova 35 11000 Beograd Jugoslavija (Received 13 12 1982)

246