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ON THE AUTOMORPHISM GROUP OF AN INFINITE GRAPH

Aleksandar Torgasev

Abstract. In this paper, a specially defined automorphism group I'(G) of a connected
countable simple infinite graph is considered. As the main result, we prove that I'(G) contains
at most one non-trivial element. All infinite graphs with a non-trivial automorphism group are
completely described.

Finally, for graphs with odd, or with a small even number (2 or 4) of non-zero eignevalues,
the corresponding automorphism groups are characterized.

1. Introduction. Throughout the paper, G is a connected infinite countable
graph without loops or multiple edges, which we briefly call-a graph. Its vertex
set is V(G) = N, and its adjacency matrix A = [a;;] is an infinite N x N matrix,
where

a2 if i,j, are adjacent

a;; =
" 0 otherwise

(a is a fixed positive constant, 0 < a < 1).

Hence, the whole graph G is labelled and the “weight” of vertex v; = i is
a’=1(i € N).

For other definitions and results concerning spectra of infinite gaphs, one can
see [3, 4, 5].

2. Results. The automorphism group I'(G) of an infinite grapf G defined
here, depends on the matrix A, thus especially depends on the way of labelling of
the vertex set V(G).

Namely, we put P € I'(G) of and only if
(1) AP = PA,
where P = [p;;] is an infinite permutation matrix of the set V(G),

1 i=wl)
Pi=Y0, j#wl)
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and w is the corresponding permutation of the set V.

In the sequel, we identify any automorphism P € I'(G) with the corresponding
permutation of the set N.

Obviously, each permutation P € I'(G) is a unitary operator in the corre-
sponding Hilbert space H, and
Pei:ew(i) (iEN),

for a fixed orthonormal basis {e;}° of H.

Relation (1) is equivalent to

(2) Ay (iyw(j) = aij  (i,5 € N),
so that vertices 7,j are adjacent if and only if w(i), w(j) are adjacent. In this

case (2) gives

@O+ =2 _ gi+i=2 o

(3) w(i) —i=—[w(j) =4 (4, -adjacent).

The last relation is very restrictive, and it is the main difference in comparison
to the finite case.

LeEMMA 1. (i) For every w € T'(G) there is a unique integer d = d(w) such
that

(4) |w(@) —i|=d (i€ N).

(ii) If w(i) =i for ani € N, then w =id.
(113) If G has at least one odd cycle, then T'(G) is trivial.

Proof. (i) For any two adjacent vertices i,j € V(QG), relation (3) yields
|w(@) —il|=[w(i) -7,
and the connectivity of G ends the proof.

The last two statements are then immediate by (7). O

Ezamples. (1) The automorphism group of the one-way infinite path

i1 io i3 iq
is always trivial.
Indeed, for any w € I'(G) we must have w(iy) = i1, thus w =id.
(2) The corresponding group of an infinite two-way infinite path

J2 Ji i 12
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is either trivial or contains exactly one non-trivial element. If, for example, i, =
2p — 1 and j, = 2p(p € N), then it is non-trivial.

The following property is one of the most important properties of the groups
considered.

THEOREM 1. In each case | T'(G) |< 2.

Proof. Let w € I'(G) and d = w(1) — 1. Then | w(i) —i|=d (i € N), and
the only possibilities we have are

w)y=d+1, 1=w(d+1),..., w(d) =2d, d=w(2d), w2d+1)=3d+1,
2d+1=w(3d+1),....

Generally, we obtain
w(i) =i+ (=1)lE=/dg,

If now wy, wy € T'(G) are the automorphisms with the corresponding values
dy = ds, by the last relation we immediately find w; = ws.

Next, let w;, we be the different automorphisms with d; < d2. Then we get
WQw1(1) = wQ(I + dl) =1+d; + do,

and also
wgwl(dl + 1) = wg(l) =1+d,,

whence d1 = d2 = d2 — d1; thus d1 = 0, w1 :id, q.e.d.

Hence, I'(G) is always either trivial or contains at most one non-trivial element
(which is then—involution). O

So, the most important question concerning I'(G) is when it is non-trivial. In
the next main theorem we completely describe all the infinite graphs which have a
non-trivial automorphism group. It appears that the considered property depends
only on the structure of the graph, and on the way of labelling of its vertex set.

First, let G be any bipartite graph. Its characteristic parts are denoted by
N; and N, assuming always that the minimal element is in N;. Note that Ny, N
are not the cardinals, but the corresponding sets of indices.

Next, we need the notion of symmetric bipartite graphs (briefly, SBGs). We
call an infinite bipartite graph with the characteristic parts Ny, No—symmetric, if
there is a bijection 7 : Ny — N, such that two vertices a € Ny, w(b) € Ny are
adjacent if and only if the vertices b € Ny, w(a) € N, are.

If G is a SBG, then obviously Ny, IV, are infinite.

If, additionally, we have that 7(a) —a = d = 7(1) — 1 for each a € Ny, we say
that Ny, No are good. In this case, we obtain that

Ny ={(2s=2)d+r|r<d, se N}, Na={(2s—1)d+r|r<d, se N}.
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THEOREM 2. Graph G has a non-trivial automorphism group if and only if
it is a SBG with the good characteristic parts N1 and Ns.

Proof. Let T'(G) be non-trivial, and let w € T'(G) be the unique non-trivial
automorphism (involution) of G. Then, by Lemma 1(iii), G can not have any odd
cycle as an induced subgraph, thus it must be bipartite.

Let, next, the characteristic parts of G be N1, Ny with the minimal element
in N;. Then, by the odd-path and the even-path characterizations of Ny, Ny, we
easily find that

w(a) =a+d(a € Ny), wb)=b—d (be N»),

where d = d(w) =w(1) =1 > 0.
Hence, V1, N» are good, and w is a needed bijection between N; and Ns.
Since the converse statement is immediate, this completes the proof. [

As examples, we consider the infinite graphs with a finite number p(p > 2) of
non-zero eigenvalues.

PROPOSITION 1. Let G have an odd number of non-zero eigenvalues. Then
its automorphism group is always trivial.

Proof. As is known ([4]), each bipartite infinite graph, for every a € (0,1),
has the spectrum symmetric about the zero. Hence, if G has an odd number of
non-zero eigenvalues, it cannot be bipartite, whence I'(G) is trivial. O

Next, consider the infinite graphs with p = 2 or 4 non-zero eigenvalues.

We need the notion of characteristic subsets of G. The characteristic subsets
N1, N,, ... of an infinite graph are the equivalence classes related to the equivalence
relation on the vertex set N : x ~ y if and only if z,y are not adjacent and they
have the same neighbors. Their number is finite or infinite and always greater
than 1. If it is finite, G is said to be of finite type (type p, if this number is
p) [5]. The corresponding quotient graph is denoted by ¢, and often called the
canonical graph of G. If, for example, G is the complete m- partitive graph
K(Ny,...,Np)(m > 2), then its characteristic subsets will be Ny,..., Ny,, and its
canonical graph is K,,.

LEMMA 2. (i) If w(z) € N; for an x € N;, then w =id.
(ii) If G is of finite type p and T'(G) is non-trivial, then p is even.

Proof. (i) Assume, on the contrary, w #id, and denote by M;, M, the
characteristic parts of G. Since if follows easily that each N; is contained either in
M or in M, we get the statement.

(ii) Let w be the non-trivial automorphism of I'(G). Since by (i), w is an
involution on the set {Ny,...,N,}, without fixed elements, we have that p must
be even. O
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PROPOSITION 2. Let G have exactly two-non-zero eigenvalues. Then T'(Q)
is non-trivial iff G is a complete bipartite graph with good characteristic parts.

Proof. In [4], we proved that G has exactly two non-zero eigenvalues if and
only if it is a complete bipartite graph. Hence, I'(G) is non-trivial iff Ny, N are
good (and consequently-infinite). O

PROPOSITION 3. The following graph
O—0O——0—o0O
Ny Ny N3 Ny
where Ny = Ny +d, N3 = Ny —d (d # 0) is the unique connected infinite graph
with four non-zero eigenvalues and a non-trivial automorphism group.

Proof. In [5] we proved that G has exactly four non-zero eigenvalues if and
only if its canonical graph is one of the eight particular graphs with 4,5 or 6 vertices.
Since six of them have a triangle as a subgraph, their automorphism groups must
be trivial. Since next, the seventh of them is P; with 5 characteristic subsets, by
Lemma 2 (ii), its automorphism group is trivial, too. Hence, only P, remains, and
the remaining proof is easy. O

The general problem for eny even number p of non-zero eigenvalues (p > 6)
is obviously equivalent to the determination of all finite connected canonical sym-
metric bipartite graphs with exactly p non-zero eigenvalues. The present author
thinks it can be solved at least for p = 6, and may be for p = 8.

Acknowledgement. The author is very indebted to the anonymous referee for the final
version of Theorem 1.
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