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ON THE AUTOMORPHISM GROUP OF AN INFINITE GRAPH

Aleksandar Torga�sev

Abstract. In this paper, a specially de�ned automorphism group �(G) of a connected
countable simple in�nite graph is considered. As the main result, we prove that �(G) contains
at most one non-trivial element. All in�nite graphs with a non-trivial automorphism group are
completely described.

Finally, for graphs with odd, or with a small even number (2 or 4) of non-zero eignevalues,
the corresponding automorphism groups are characterized.

1. Introduction. Throughout the paper, G is a connected in�nite countable
graph without loops or multiple edges, which we brie
y call{a graph. Its vertex
set is V (G) = N , and its adjacency matrix A = [aij ] is an in�nite N �N matrix,
where

aij =

(
ai+j�2 if i; j; are adjacent

0 otherwise

(a is a �xed positive constant, 0 < a < 1).

Hence, the whole graph G is labelled and the \weight" of vertex vi = i is
ai�1(i 2 N).

For other de�nitions and results concerning spectra of in�nite gaphs, one can
see [3, 4, 5].

2. Results. The automorphism group �(G) of an in�nite grapf G de�ned
here, depends on the matrix A, thus especially depends on the way of labelling of
the vertex set V (G).

Namely, we put P 2 �(G) of and only if

(1) AP = PA;

where P = [pij ] is an in�nite permutation matrix of the set V (G),

pij =

(
1; j = !(i)

0; j 6= !(i)

AMS Subject Classi�cation (1980): Primary 05C 50.



234 Aleksandar Torga�sev

and ! is the corresponding permutation of the set N .

In the sequel, we identify any automorphism P 2 �(G) with the corresponding
permutation of the set N .

Obviously, each permutation P 2 �(G) is a unitary operator in the corre-
sponding Hilbert space H , and

Pei = e!(i) (i 2 N);

for a �xed orthonormal basis feig
1

1 of H .

Relation (1) is equivalent to

(2) a!(i)!(j) = aij (i; j 2 N);

so that vertices i; j are adjacent if and only if !(i); !(j) are adjacent. In this
case (2) gives

a!(i)+!(j)�2 = ai+j�2; or

!(i)� i = �[!(j)� j] (i; j; {adjacent):(3)

The last relation is very restrictive, and it is the main di�erence in comparison
to the �nite case.

Lemma 1. (i) For every ! 2 �(G) there is a unique integer d = d(!) such
that

(4) j !(i)� i j= d (i 2 N):

(ii) If !(i) = i for an i 2 N , then ! =id.

(iii) If G has at least one odd cycle, then �(G) is trivial.

Proof . (i) For any two adjacent vertices i; j 2 V (G), relation (3) yields

j !(i)� i j=j !(j)� j j;

and the connectivity of G ends the proof.

The last two statements are then immediate by (i): �

Examples . (1) The automorphism group of the one-way in�nite path

� � � � � � �
i1 i2 i3 i4

is always trivial.

Indeed, for any ! 2 �(G) we must have !(i1) = i1, thus ! =id.

(2) The corresponding group of an in�nite two-way in�nite path

� � � � � � � � � �
j2 j1 i1 i2
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is either trivial or contains exactly one non-trivial element. If, for example, ip =
2p� 1 and jp = 2p(p 2 N), then it is non-trivial.

The following property is one of the most important properties of the groups
considered.

Theorem 1. In each case j �(G) j� 2.

Proof . Let ! 2 �(G) and d = !(1) � 1. Then j !(i) � i j= d (i 2 N), and
the only possibilities we have are

!(1) = d+ 1; 1 = !(d+ 1); . . . ; !(d) = 2d; d = !(2d); !(2d+ 1) = 3d+ 1;

2d+ 1 = !(3d+ 1); . . . :

Generally, we obtain

!(i) = i+ (�1)[(i�1)=d]d:

If now !1; !2 2 �(G) are the automorphisms with the corresponding values
d1 = d2, by the last relation we immediately �nd !1 = !2.

Next, let !1; !2 be the di�erent automorphisms with d1 < d2. Then we get

!2!1(1) = !2(1 + d1) = 1 + d1 + d2;

and also
!2!1(d1 + 1) = !2(1) = 1 + d2;

whence d1 = d2 = d2 � d1; thus d1 = 0; !1 =id, q.e.d.

Hence, �(G) is always either trivial or contains at most one non-trivial element
(which is then|involution). �

So, the most important question concerning �(G) is when it is non-trivial. In
the next main theorem we completely describe all the in�nite graphs which have a
non-trivial automorphism group. It appears that the considered property depends
only on the structure of the graph, and on the way of labelling of its vertex set.

First, let G be any bipartite graph. Its characteristic parts are denoted by
N1 and N2, assuming always that the minimal element is in N1. Note that N1; N2

are not the cardinals, but the corresponding sets of indices.

Next, we need the notion of symmetric bipartite graphs (brie
y, SBGs). We
call an in�nite bipartite graph with the characteristic parts N1; N2{symmetric, if
there is a bijection � : N1 ! N2 such that two vertices a 2 N1; �(b) 2 N2 are
adjacent if and only if the vertices b 2 N1; �(a) 2 N2 are.

If G is a SBG, then obviously N1; N2 are in�nite.

If, additionally, we have that �(a)�a = d = �(1)� 1 for each a 2 N1, we say
that N1; N2 are good . In this case, we obtain that

N1 = f(2s� 2)d+ r j r � d; s 2 Ng; N2 = f(2s� 1)d+ r j r � d; s 2 Ng:
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Theorem 2. Graph G has a non-trivial automorphism group if and only if
it is a SBG with the good characteristic parts N1 and N2.

Proof . Let �(G) be non-trivial, and let ! 2 �(G) be the unique non-trivial
automorphism (involution) of G. Then, by Lemma 1(iii), G can not have any odd
cycle as an induced subgraph, thus it must be bipartite.

Let, next, the characteristic parts of G be N1; N2 with the minimal element
in N1. Then, by the odd-path and the even-path characterizations of N1; N2, we
easily �nd that

!(a) = a+ d(a 2 N1); !(b) = b� d (b 2 N2);

where d = d(!) = !(1)� 1 > 0.

Hence, N1; N2 are good, and ! is a needed bijection between N1 and N2.

Since the converse statement is immediate, this completes the proof. �

As examples, we consider the in�nite graphs with a �nite number p(p � 2) of
non-zero eigenvalues.

Proposition 1. Let G have an odd number of non-zero eigenvalues. Then
its automorphism group is always trivial.

Proof . As is known ([4]), each bipartite in�nite graph, for every a 2 (0; 1),
has the spectrum symmetric about the zero. Hence, if G has an odd number of
non-zero eigenvalues, it cannot be bipartite, whence �(G) is trivial. �

Next, consider the in�nite graphs with p = 2 or 4 non-zero eigenvalues.

We need the notion of characteristic subsets of G. The characteristic subsets
N1; N2; . . . of an in�nite graph are the equivalence classes related to the equivalence
relation on the vertex set N : x � y if and only if x; y are not adjacent and they
have the same neighbors. Their number is �nite or in�nite and always greater
than 1. If it is �nite, G is said to be of �nite type (type p, if this number is
p) [5]. The corresponding quotient graph is denoted by g, and often called the
canonical graph of G. If, for example, G is the complete m- partitive graph
K(N1; . . . ; Nm)(m � 2), then its characteristic subsets will be N1; . . . ; Nm, and its
canonical graph is Km.

Lemma 2. (i) If !(x) 2 Ni for an x 2 Ni, then ! =id.

(ii) If G is of �nite type p and �(G) is non-trivial, then p is even.

Proof . (i) Assume, on the contrary, ! 6=id, and denote by M1; M2 the
characteristic parts of G. Since if follows easily that each Ni is contained either in
M1 or in M2, we get the statement.

(ii) Let ! be the non-trivial automorphism of �(G). Since by (i), ! is an
involution on the set fN1; . . . ; Npg, without �xed elements, we have that p must
be even. �
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Proposition 2. Let G have exactly two-non-zero eigenvalues. Then �(G)
is non-trivial i� G is a complete bipartite graph with good characteristic parts.

Proof . In [4], we proved that G has exactly two non-zero eigenvalues if and
only if it is a complete bipartite graph. Hence, �(G) is non-trivial i� N1; N2 are
good (and consequently-in�nite). �

Proposition 3. The following graph


 
 
 

N1 N2 N3 N4

where N4 = N1 + d; N3 = N2 � d (d 6= 0) is the unique connected in�nite graph
with four non-zero eigenvalues and a non-trivial automorphism group.

Proof . In [5] we proved that G has exactly four non-zero eigenvalues if and
only if its canonical graph is one of the eight particular graphs with 4,5 or 6 vertices.
Since six of them have a triangle as a subgraph, their automorphism groups must
be trivial. Since next, the seventh of them is P5 with 5 characteristic subsets, by
Lemma 2 (ii), its automorphism group is trivial, too. Hence, only P4 remains, and
the remaining proof is easy. �

The general problem for eny even number p of non-zero eigenvalues (p � 6)
is obviously equivalent to the determination of all �nite connected canonical sym-
metric bipartite graphs with exactly p non-zero eigenvalues. The present author
thinks it can be solved at least for p = 6, and may be for p = 8.

Acknowledgement. The author is very indebted to the anonymous referee for the �nal
version of Theorem 1.

REFERENCES

[1] D. Cvetkovi�c, M. Doob, H. Scachs, Spectra of Graphs{Theory and Application, VEB Deut-
scher Verlag Wissen., Berlin, 1980; Academic Press, New York, 1980.

[2] M. Petersdorf, H. Sachs, Uber spektrum, Automorphismengruppe und Teiler eines Graphen,
Wis. Z. THE Ilmenau 15 (1969), heft 4/5, 123{128.

[3] M. Petrovi�c, The spectrum of an in�nite labelled graph, (in Serbian), Master's thesis, Fac.
Sci., Beograd, 1981.

[4] A. Torga�sev, On spectra of in�nite graphs, Publ. Inst. Math. (Beograd) 29 (43) (1981),
269{292.

[5] A. Torga�sev, On in�nite graphs with three and four non-zero eigenvalues, Bull. Acad. Serbe
Sci. et Arts LXXVI, Sci. Math. 11 (1981), 39{48.

[6] A. Torga�sev, On in�nite graphs with �ve non-zero eigenvalues, Bull. Acad. Serbe Sci. et
Arts LXXIX, Sci. Math. 12 (1982), 31{38.

Institut za matematiku (Received 21 04 1981)
Prirodno-matemati�cki fakultet
Beograd, Jugoslavija


