
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 34 (48), 1983, pp.211{215

ON PARA-A-EISTEIN MANIFOLDS

B. B. Sinha and Ramesh Sharma

1. Introduction. An n-dimensional smooth manifoldMn with a tensor �eld
f of type (1.1.), a vector �eld T , a l-form A and a Riemannian matric g is said
to be an almost paracontact Riemannian manifold if [2]

(a) f2 = I �A
 T(1.1)

(b) g(fX; fY ) = g(X;Y )�A(X)A(Y ):(1.1)

It can be shown that

(1.2) A(T ) = 1; fT = 0; Af = 0; rank (f) = n� 1

whence it follows that

g(T; T ) = 1; 0f(X;Y ) =0 f(Y;X)

0f being de�ned by 0f(X;Y ) = g(fX; Y ) and X;Y standing for arbitrary vector
�elds on Mn.

If D be the Riemannian connexion induced on Mn by g such that [3]

(1.3) (DXA)Y + (DYA)X = 20f(X;Y )

then the almost paracontact Riemannian manifold Mn is termed a paracontact
Riemannian manifold. A paracontact Riemannian manifold Mn whose l-form A
is closed, that is

(DXA)Y � (DY A)X = 0(1.4)

(DXf)Y = 2A(X)A(Y )T � g(X;Y )T �A(Y )X(1.5)

is called a normal paracontact Riemannian manifold. It is easy to show that the
torsion tensor N � (dA) 
 T = 0, where N is the Nijenhuis tensor of f .
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2. Para-A-Einstein manifold. We de�ne a para-A-Einstein manifold as a
normal para contact Riemannian manifold whose Ricci tensor is given by [1]

(2.1) Ric (X;Y ) = a g(X;Y ) + cA(X)A(Y )

where a and c are scalar functions. Obviously, we have

Ric (fX; Y ) = Ric(XfY );(2.2)

Ric (T; T ) = a+ c:(2.3)

Theorem 2.1. The Riccian curvature of a para-A-Einstein manifold in the

direction of T is equal to �(n� 1).

Proof . From (1.3) and (1.4), we get

(2.4) DXT = fX:

From (1.5) and (2.4) we �nd the curvature tensor K satisfying

(2.5) K(X;Y; T ) = A(X)Y �A(Y )X:

Contracting (2.5), we get

(2.6) Ric(Y; T ) = �(n� 1)A(Y ):

Substituting T for Y in it we have the theorem.

Theorem 2.2. The functions a and c of the de�ning equation (2.1) are

constants, provided tr. f = 0.

Proof . Equation (2.3) and theorem (2.1) imply a + c = 1 � n. So we need
only to show that a is constant. From (2.1), on contraction, we get r = na + c
which, on di�erentiation, yields

(2.7) Xr = nXa +Xc = (n� 1)Xa;

where r is the scalar curvature. Again from (2.1) we have R(X) = aX + cA(X)T
which, on di�erentiation along Y , yields

(DY R)X = (Y a)X + (Y c)A(X)T + c(DY A)(X)T + cA(X)DY T:

The above equation assumes the form

(DYR)X = Y a+ (Y c)A(X)T + c0f(X;Y )T + cA(X)fY

due to (2.4). Contracting in with respect to Y , we get (divR)X = Xa+(Tc)A(X).

Using the identity (div R)X = Xr=2 and (2.7), we get

(2.8) (n� 3)Xa = 2(Tc)A(X):
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Putting X = T in it, we get

(n� 3)Ta = 2Tc = �2Ta

giving Ta = 0 and hence Tc = 0. Consequently (2.8) yields Xa = 0.

We now give a condition for a normal paracontact Riemannian manifold to
be a para-A-Einstein manifold. With the help of (1.5) we can show for a normal
paracontact Riemannian manifold that

(2.9)

K(X;Y; fZ) = f(K(X;Y; Z)) + 2fA(Y )0f(X;Z)T �A(X)0f(Y; Z)T

+A(Y )A(Z)fX �A(X)A(Z)fY g �0 f(X;Z)Y +0 f(Y; Z)X

� g(Y; Z)fX + g(X;Z)fY:

Contracting it with respect to X we �nd

(2.10) Ric(Y; fZ) = (C 0

1K)(Y; Z)+(n�2)0f(Y; Z)+(C 0

1f)f2A(Y )Z(Z)�g(Y; Z)g

where C 0

1 denotes contraction at the �rst slot and K
def
= fK.

(2.11) (C 0

1K)(Y; Z) = (C 0

1K)(Z; Y );

From (2.10) and (2.11) it is obvious that

(2.12) Ric(X; fY ) = Ric(fX; Y ):

Theorem 2.3. In order that a normal paracontact Riemannian manifold Mn

may be a para-A-Einstein manifold it is necessary and suÆcient that the symmetric

tensors C 0

1K and 0f should be linearly dependent.

Proof . The theorem follows in consequence of equations (2.10), (2.1), (1.1)a,
(2.6) and Theorem 2.2.

Theorem 2.4. In a para-A-Einstein manifold, the symmetric (0; 2)- tensor
C 0

1K is parallel along the vector �eld T .

Proof . We have

(2.13) (C 0

1K)(Y; Z) = (a� n+ 2)0f(Y; Z)

due to (2.10) and (2.1). Di�erentiating it along T we have (DTC
0

1K)(Y; Z) = 0
due to (1.5).

Theorem 2.5. For a para-A-Einstein manifold, the Lie-derivatives of the

Ricci tensor and C 0

1K are given by

LTRic = (2a=(a� n+ 2))C 0

1K;(2.14)

LT (C
0

1K) = 2(a� n+ 2)(g �A
A):(2.15)

Proof . It is easy to show for a normal paracontact Riemannian manifold that
LTA = 0; LTf = 0; LTg = 20f; L0

T
f = 2(g �A
A)
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From these relations and Lie-derivation of the equations (2.1) and (2.13) along
T , the theorem follows.

3. Examples. Example (3.1) From [3] it is known that a neighborhood of
each point of a manifold of constant curvature is a normal paracontact Einstein
manifold which is therefore a trivial example of a para-A-Einstein manifold with
c = 0.

Example (3.2). Next, we give an example of non-trivial para-A-Einstein man-
ifold. Consider a 2(m + 1){dimensional almost product and almost decomposable
manifold M2(m+1) with structure tensor F such that the complementary distri-
butions (having no common direction) may be of the same real dimension m + 1.
Suppose that M2(m+1) is of almost constant curvature [5]. Then its curvature
tensor K is given by

(3.1) 0 ~K( ~X; ~Y ; ~Z; ~W ) = k[G( ~X; ~W )G( ~Y ; ~Z)�G( ~X; ~Z)G( ~Y ; ~W )

+0 F ( ~X; ~W )0F ( ~Y ; ~Z)�0 F ( ~X; ~Z)�0 F ( ~X; ~Z)0F ( ~Y ; ~W )]

where k is a constant, G is the metric tensor of M2(m+1) and ~X; ~Y ; ~Z; ~W are
arbitrary vector �elds on it. Let M2m+1 be a hypersurface in M2(m+1) and M2m+1

be a normal paracontact Riemannian manifold with structure tensors f; T;A; g.
Then it can be shown [4] that

HX = �X +A(X)T;(3.2(a))

C 0H = �2n;(3.2(b))

where H is the second fundamental tensor of type (1.1) of the hypersurface. Since
the dimension of the hypersurface is odd we can adapt an orthonormal frame
e1; . . . ; em; fe1; . . . ; fem; T on M2m+1, with respect to which C 0

1f vanishes. Con-
sequently divT vanishes in view of (2.4) [3]. If B be the di�erential of the inclusion

map b :M2m+1 !M2(m+1), substituting BX;BY;BW for ~X; ~Y ; ~Z; ~W in (3.1), we
have

(3.3) 0 ~K(BX;BY;BZ;BW ) = [g(X;W )g(Y; Z)� g(X;Z)g(Y;W )

+0 f(X;W )0f(Y; Z)�0 f(X;Z)0f(Y;W )];

where we have used the transformation FBX = BfX +A(X)N;N being the unit
normal vector �eld to the hypersurface.

Using Gauss characteristic equation in (3.3) and contractin, we get

Ric(Y; Z) + h(HZ)� (C 0

1H)h(Y; Z) = k[A(Y )A(Z) + (2m� 1)g(Y; Z)]:

Using (3.2)(a), (3.2)(b) frequently in the above equation, we �nd

Ric (Y; Z)� (2m� 1)fg(Y; Z)�A(Y )A(Z)g = kf(2m� 1)g(Y; Z) +A(Y )A(Z)g

which implies Ric(Y; Z) = (k +1)(2m� 1)g(Y; Z) + (k+1� 2m)A(Y )A(Z), show-
ing that the normal paracontact Riemannian hypersurface of almost product and
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almost decomposable manifold of almost constant curvature and whose comple-
mentary distributions have equal dimensions is a para-A-Einstein manifold.

It is notable that the scalar curvature of the enveloping manifold M2(m+1) is
equal to 4n(n+ 1)k.
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