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A NOTE ON GENERALIZED LINE GRAPHS

Z. Radosavljevi�c, S. Simi�c, M. Syslo, J. Topp

In this paper we will �nd all graphs G such that G and its complement
(denoted by G) are generalized line graphs. We consider only �nite undirected
graphs without loops or multiple lines. The basic terminology follows [1].

The theorem we are going to prove as a generalization of a result of L. W.
Beineke [2], who found all graphs G such that G and G are line graphs. In a
series of papers F. Harary et al. (see, for example, [3]) considered problems about
graphs and their complements sharing a given property; our problem �ts in their
investigation.

We now give the basic de�nitions.

De�nition 1. The cocktail-party graph on 2n points denoted by CP (n) is the
regular graph on 2n points of degree 2n� 2.

De�nition 2. A generalized line graph, denoted by L(H ; a1; . . . ; an), is
constructed from a graph H with n points v1; . . . ; vn and nonnegative inte-
gers a1; . . . ; an in the following way; it consists of disjoint copies of L(H) and
CP (ai); i = 1; 2; . . . ; n with additional lines joining a point in L(H) with a point
in CP (ai) if the point in L(H) corresponds to a line in H that has vi as an
endpoint.

De�nition 3. A generalized cocktail-party graph (GCP) is a graph obtained
by the deletion of independent lines from the complete graph Kn. Any point of
degree n� 1 is said to be of l-type, while the others are said to be of a-type.

In this paper we will refer to the following theorems from [4] or [5].

Theorem A. A graph G is a generalized line graph if and only if its lines can

be partitioned into GCPs such that each point is in at most two GCPs, two GCPs

have at most one common point and if two GCPs have a common point, then it is

of l-type in both of them.

Theorem B. A graph G is a generalized line graph if and only if it does not

contain any of the 31 graphs in Fig.1 as an induced subgraph.

An immediate consequence of Theorem B is:
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Theorem C. A graph G is a generalized line graph if and only if its com-

plement G does not contain complements of any of the 31 graphs in Fig. 1 as an

induced subgraph.

Fig. 1

Fig. 2
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In Fig. 2 we give only those of the complements of graphs in Fig. 1 which we
will refer to in the further text.

The next theorem is a theorem of L. W. Beineke from [2]. We give it in a
somewhat modi�ed form.

Theorem D. Both G and G are line graphs if and only if either of them

is equal to: 1Æ a clique or its complement; 2Æ an induced subragph of some of the

graphs in Fig. 3.

Now, let S denote the set of all graphs G such that G and G are generalized
line graphs. Clearly, any GCP belongs to S. The same applies to the complements
of GCPs. Now we will show that all other members of S, denote the corresponding
set by S0 are small graphs with at most 9 points.

Lemma 1. If G 2 S0 is not connected, it contains only one nontrivial com-

ponent and at most two isolated points.

Proof . Suppose G has two nontrivial components, one of which is not a line.
Then G contains graphs (1) or (2) of Fig. 2 as induced subgraphs. If G has just
one nontrivial component which is not a line and at least three isolated points, then
it contains graphs (3) or (4) of Fig. 2 as induced subgraphs. �

Fig. 3

Lemma 2. If G 2 S0 contains at least one GCP1 with at least two lines

removed, then G is an induced subgraph of the graph of Fig. 4.

Proof . Let G contain a GCP with at least two lines removed. Since G

itself is not a GCP , it must contain at least one additional point. Now, because
of graph (5) of Fig. 2, our GCP cannot have more than two lines removed. Since
the additional point can be joined with at most two points of this GCP , (5) also
implies that our GCP has at most six points. If this GCP is equal to C4, then,
because of graph (6) of Fig. 2, G contains at most one isolated point. Thus, G
is contained in the graph of Fig. 4. Otherwise, if our GCP is equal to K5 � 2K2

1It is assumed that G is decomposed according to Theorem A. The same will be assumed
later on.



196 Z. Radosavljevi�c, S. Simi�c, M. Syslo, J. Topp

or K6 � 2K2, any point not contained in it is adjacent to all l-type points of this
GCP . Using (1) and (6) we easily complete the proof of the Lemma. �

Lemma 3. If G 2 S0 contains two disjoint GCPs, each of them having one

line removed, then G is an induced subgraph of some of the graphs displayed in

Fig. 5.

Fig. 4 Fig. 5 Fig 6

Proof . Suppose C1 and C2 are particular GCPs as supposed in the lemma.
Let x1 and x2 be any of the l-type points of C1 and C2, respectively. They are
adjacent because of (1) (see Fig. 2). It follows from Theorem A that x1 and x2
are unique l-type points in C1 and C2. On the other hand, the line x1x2 belongs
to some GCP , say C3. Because of (7) there are no more GCPs in G, not isolated
points. By (8) and (9) C3 cannot contain K5 or K5 � x as an induced subgraph.
Thus C3 is one of the graphs K2;K3;K4 � x and K4:�

Lemma 4. If G 2 S0 contains two GCPs with a common point, each of them

having one line removed, then G is an induced subgraph of the graph displayed in

Fig. 6.

Proof . Suppose C1 and C2 are particular GCPs as supposed in the lemma.
Because of (9), C1 and C2 can be equal only to K1;2 or K4 � x. If C1 and C2 are
both equal to K1;2; G has no more lines by Theorem A, but it can have at most two
isolated points. Furthermore, at least one the GCPs is equal to K4 � x. Because
of (10), G has no isolated points and by Lemma 1 it is connected. Now, assume
C1 = K4�x and C2 = K1;2. Let x1 be the l-type point of C1 which is not contained
in C2. If there are more than two GCPs in G, one of them, say C3, meets C1 at
x1. If C3 is not a clique, we get a case already discussed in Lemma 3. By (1), C3

can have at most one line. Also, from the same reason, G has no more GCPs.
Finally, assume that C1 and C2 are both equal to K4 � x. Let x1 and x2 be the
l-type points of C1 and C2, each of them belonging to just one GCP . Because of
(1) x1 and x2 must be adjacent (therefore they constitute a new GCP , say C3) and
C3 can be a clique with at most three points. By the same reason, if C3 is equal
to K3; G has no more GCPs. Otherwise, if C3 is not a clique, it must be equal to
K4 � x:�

From Lemmas 3 and 4, it follows that all other graphs G have at most one
GCP with just one line removed.
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Lemma 5. If G 2 S0 contains just one GCP with one line removed, then G

is an induced subgraph of some of the graphs in Fig. 7.

Fig. 7

Proof . Suppose C1 is the GCP with just one line removed. Let C2 be a clique
having a common point x with C1 and C3 a clique disjoint with C1. Then, by (1),
x is adjacent to just one endpoint of every line in C3. This is turn implies that C3

is a line, i.e. K2. On the other hand, by (11), C1 is equal to K1;2. furthermore, by
(14), C2 is a clique with at most four points. Any other GCP (if it exists), meets
C2 or even C3 as well. But the latter is forbidden by (7) or (13). Since isolated
points are not allowed by (7), G is an induced subgraph of the �rst graph of Fig.7.
Thus in all other possibilities every clique meets C1. For the same reason as before,
any of these cliques has at most four points. Assume now that there is a clique C2

with four points. In that case, by (1), C1 must be equal to K1;2. It follows from
(8) that G has no isolated points and consequently it is an induced subgraph of
the �rst graph of Fig. 7. Next, asume there is a clique C2 with three points. If
C1 is not K1;2 i.e. it has more than one l-type point, then, because of (1), each
of these points is adjacent to just one point of C2 which iz not in C1. If C1 has
more than two points of l-type, then (12) or (1) appear in G. By (10) isolated
points are forbidden and therefore G is an induced subgraph of the second graph
of Fig. 7. Finally, assume all cliques are lines. From (15), it follows than C1 has
at most six points(G is not a GCP ). If C1 has �ve or six points, i.e. if it is equal
to K5 � x or K6 � x, then, by (15), G is an induced subgraph of the last graph of
Fig. 7. If C1 has four points, the same follows from (9) or (10). Thus, it remains
that C1has three points, i.e. it is equal to K1;2. Now, it immediately follows that
G is an induced subgraph of the third graph of Fig. 7. �

Now, we have to consider the graphs G 2 S0 which contain only cliques. Of
course, these graphs are line graphs. If their complements are line graphs as well,
we can use the result of L. W. Beineke (Theorem D). Otherwise, if they are not line
graphs, but generalized line graphs, it is clear that they were already encountered
in some of the lemmas. Thus, collecting the former conclusions, we arrive to the
following theorem.

Theorem (Main result). Both G and G are generalized line graphs if and

only if either of them is equal to: 1Æ a generalized cocktail-party graph, or its

complement; 2Æ an induced subgraph of some of the graphs of Fig. 8.

It is known (see, for example, [6]) that, in comparison with line graphs, gener-
alized line graphs comprise a larger class of graphs that have their spectra bounded
from below by �2. Actually, this is the main reason for the current interest in
generalized line graphs.
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Fig. 8

It is pointed out in [7] that the complements of graphs having their spectra bounded
from below by �2 are the graphs with second largest eigenvalue not exceeding 1.
Thus, if some graphs G belongs to S then all its eigenvalues except possibly the
largest one are located in the segment [-2, 1]. This is the main spectral implication
of our result. The problem now arises to characterize all graphs with this particular
property, i.e. to �nd all graphs whose all eigenvalues, except possibly the largest
one, are located in the segment [�2; 1].

Added in proof . The sixth and the seventh graph from Fig. 3 are not drawn correctly.
They should be as the seventh and the third graph from Fig. 8.
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