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NON-ANTICIPATIVE INTEGRAL TRANSFORMATIONS

OF STOCHASTIC PROCESSES

Ljiljana Petrovi�c

Summary. Let X be a stochastic process, de�ned on the interval [0; 1], and Y its non-
anticipative integral transformation de�ned by

(1) Y (t) =

tZ

0

g(t; u)X(u)du

In this paper we shall investigate conditions related to the family

(2) G = fg(t; u); t 2 [0; 1]; u � tg

under which the process Y : 1Æ generates the spaces H(Y ; t) equal to the corresponding spaces
H(X; t) of the process X; 2Æ belongs to the same class as the process X; 3Æ is continuous, provided
X is continuous.

Introduction. Let X = fX(t); t 2 [0; 1]g be a stohastic process of the
second order, that is kX(t)k <1 for each t 2 [0; 1]; the inner product and the norm
are de�ned as in [2]. The Hilbert spaces generated by elements X(s); s � t, will be
denoted by H(X ; t). In the whole paper, we assume that all considered processes
satisfy the following conditions: (a) H(X ; 0) = 0 and (b) X(t) is continuous in the
quadratic mean for each t. From (b) it follows immediately that the space H(X)
is separable [1].

At �rst, we consider conditions related to the family G, under which the oper-
ator A : X ! Y de�ned by (1) on the curve determined by X , is linearly extendable
to the whole H(X). We assume that kX(t)k < M; t 2 [0; 1] and that the operator
A is bounded, that is that there exists a constant K > 0 such that kAk < K. For

instance, it is suÆcient to assume that the condition
tR
0

tR
0

g(t; u)g(t; v)dudv < 1 is

satis�ed for each t 2 [0; 1].

Theorem 1. If the operator A from (1) is linear and bounded on elements
from fX(t); t 2 [0; 1]g, then it can be linearly extended to H(X).
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Proof . The operator A is linear on the curve X(t) i�

(3) A(�X(t1) + �X(t2)) = �AX(t1) + �AX(t2); �; � 2 R; t1; t2 2 [0; 1]:

We shall show that the operator A is linear on H(X), i.e., that

(4) A(�x + �y) = �Ax + �Ay;

holds for all x; y 2 H(X) and �; � 2 R.

The space H(X) contains:

1Æ �nite linear combinations of elements from the curve determined by X(t);

2Æ limits of sequences of elements of the form 1Æ.

Let xn and ym be elements of the form:

xn =

nX
i=1

�iX(ti); ym =

mX
j=1

�jX(t�j ); �i; �j 2 R; ti; t
�
j 2 [0; 1]:

Assuming that

ti =

(
ti; i = 1; n

t�i�n; i = n+ 1; n+m
;

we have

A(�xn + �ym) = A

n+mX
i=1

iX(ti)

where

i =

(
��i; i = 1; n

��i�n; i = n+ 1; n+m
;

so that (4) follows from (3).

Let x and y be elements of the form 1Æ; we have

(5) A(x+ y) = A l.i.m.
n;m!1

(xn + ym) = l.i.m.
n;m!1

A(xn + ym):

Relation (5) is equivalent to

(6) l.i.m.
n!1

Axn + l.i.m.
m!1

Aym +A l.i.m.
n!1

xn +A l.i.m.
m!1

ym = Ax +Ay

From (5) and (6)
A(x + y) = Ax+Ay:

Therefore, operator A is linear on H(X).

Lemma 1. The process X(t)
tR
0

h(t; u)dZ(u), where Z is a process with orthog-

onal increments such that kdZ(u)k2 = �dv; � > 0, is continuous in the quadratic
mean i� the functions h(t; u) are continuous in the �rst argument for almost all
values of the second argument.
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Proof . Let the functions h(t; u) be continuous in the point t0 2 [0; 1] for every
u, i.e.,

(7) Leb fu :j h(t; u)� h(t0; u) j! 0; t! t0g = 1:

We shall show that the process X(t) is continuous in the quadratic mean in t0 that
is

(8) kX(t)�X(t0)k ! 0; t! t0:

For each t; t0 2 [0; 1] we have

(9)

kX(t)�X(t0)k =

=


minft;t0gZ

0

[h(t; u)� h(t0; u)]dZ(u) + Ifv:v�t0g(t)

tZ
t0

h(t; u)dZ(u)�

� Ifv:v<t0g(t)

t0Z
t

h(t0; u)dZ(u)

 = �

minft;t0gZ
0

j h(t; u)� h(t0; u) j
2 du+

+ Ifv:v�t0g(t)�

tZ
t0

j h(t; u) j2 du� Ifv:v<t0g(t)�

t0Z
t

j h(t0; u) j
2 du:

Since we have (7), the last sum tends to zero as t ! t0; thus X(t) is contiuous in
the quadratic mean in t0.

Moreover, it is easily seen that conversely, in view of (9), relation (8) follows
from relation (7).

1. Equality of spaces H(X; t) and H(Y ; t) for each t 2 [0; 1]. We
shall investigate conditions related to the function family G, given by (2), under
which the spacesH(Y ; t), generated by Y , are identical to the corresponding spaces
H(X ; t) of X for each t 2 [0; 1].

Let X(t) =
NP
i=1

tR
0

hi(t; u)dZi(u), where N is an arbitrary natural number or

in�nity, be the Hida-Cramer representation of the stohastic process fX(t); t 2

[0; 1]g of the second order. It is known that H(X ; t) =
NP
i=1

�H(Zi; t) i� the

family fhi(t; �); t 2 [0; 1]; i = 1; . . . ; Ng is complete with respect to FZ =
(F1; . . . ; FN )(Fn(t) = E j Zn(t) j

2; 0 � t � 1; n = 1; N). The transformation
of X , de�ned by (1) can be written as

(10) Y =

NX
i=1

tZ
0

� tZ
v

g(t; u)hi(u; v)du

�
dZi(v):
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According to [5] equality H(Y ; t) =
NP
i=1

�H(Zi; t); t 2 [0; 1] holds i� the

family

�
tR
v

g(t; u)hi(u; v)du; t 2 [0; 1]; i = 1; . . . ; N

�
is complete with respect to

FZ = (F1; . . . ; FN ). Let f(�) = (f1(�); . . . ; fN (�)) be the function from L2(dFZ)
such that

(11)

NX
i=1

tZ
0

� tZ
v

g(t; u)hi(u; v)du

�
fi(v)dFi(v) = 0 for each t � t0:

It is equivalant to

tZ
0

g(t; u)

� NX
i=1

uZ
0

hi(u; v)fi(v)dFi(v)

�
du = 0:

If the family G, from (2), is complete with respect to the Lebesque measure then
from (11) it follows that

(12)
NX
i=1

tZ
0

hi(u; v)fi(v)dFi(v) = 0 almost everywhere on [0; t0]:

If the functions hi(u; v); i = 1; . . . ; N are continuous in the �rst argument for
almost all v, then, relation (12) holds everywhere on [0; t0]. By assumption, the
family fhi(u; �); u 2 [0; 1]; i = 1; . . . ; Ng is complete, so that (11) implies fi(v) =
0; i = 1; . . . ; N almost everywhere with respect to FZ = (F1; . . . ; FN ).

But since the continuity of functions hi(u; v); i = 1; . . . ; N in the �rst argu-
ment for almost all values of the second argument, is equivalent to the continuity
of X in the quadratic mean, we proved:

Theorem 2. If X is a second order stohastic process with multiplicity N(N
is an arbitrary natural number of in�nity), the process Y is de�ned by (1), the
family G from (2) is complete with respect to the Lebesque measure, and X is
continuous in the quadratic mean, then the equality H(X ; t) = H(Y ; t) holds for
every t 2 [0; 1].

Consequence 1. If X is a Markov process, the process Y is de�ned by (1),
and the family G from (2) is complete with respect to the Lebesgue measure, then
the equality H(X ; t) = H(Y; t) holds for each t 2 [0; 1].

Remark : The completeness of the family G with respect to the Lebesgue
measure is suÆcient, but not necessary for the equality of the spaces H(X ; t) and
H(Y ; t); t 2 [0; 1].
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2. Some conditions under which X and Y belong to the same class

of stochastic processes. Here we shall determine some conditions related to the
family G, from (2), under which the given process X and the process Y , de�ned
by (1), belong to the same class of processes.

If X is Markov process, then according to [3, 4]

(13) X(t) = h(t)Z(t); t 2 [0; 1]; h(t) 6= 0 almost everywhere

is its Hida-Cramer representation. Z is a process with orthogonal increments, so
that (13) becomes

X(t) =

tZ
0

h(t)dZ(u); u 2 [0; 1]:

The transformation (1) of X becomes

(14) Y (t) =

tZ
0

g�(t; v)dZ(v)

where

(15) g�(t; v) =

Z t

v

g(t; u)h(u)du:

Assume that family G, from (2), is complete with respect to the Lebesgue measure.
Then, according to Consequence 1., equality H(X ; t) = H(Y ; t) holds for each
t 2 [0; 1]. If Y is a Markov process, then [5] for each s; t 2 [0; 1]; s � t, the
projection of Y (t) onto H(Y ; s) coincides with the projection of Y (t) onto element
Y (s)

(16) PH(Y ;s)Y (t) = a(t; s)Y (s); s � t;

where a(t; s) [5] is a scalar function de�ned for s; t 2 [0; 1]; s � t by

a(t; s) = r(t; s)=r(s; s); s � t

and r(s; t) is the correlation function of the process Y . Function a(�; �) satis�es
conditions (see [3, 5])

a(t3; t1) = a(t3; t2) � a(t2; t1) for any t1 � t2 � t3; t1; t2; t3 2 [0; 1];

and
a(t2; t1) = h(t2)=h(t1) for any t1 � t2; t1; t2 2 [0; 1]:

From (16) it follows that

(Y (t3)� a(t3; t2)Y (t2); Y (t1)) = 0 for all t1 � t2 � t3:

The last relation is, according to (14), equivalent to

t1Z
0

[g�(t3; v)� a(t3; t2)g�(t2; v)]g�(t1; v)dv = 0
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or
t1Z
0

[g�(t3; v)� h(t3)=h(t2) � g�(t2; v)]g�(t1; v)dv = 0:

Since g�(t1; v) = 0 for v > t1, the last equality implies

1Z
0

[g�(t3; v)� h(t3)=h(t2) � g�(t2; v)]g�(t1; v)dv = 0:

and that means

(17) g�(t1; �) ? g�(t3; �)� h(t3)=h(t2) � g�(t2; �) in L2(dv):

By analogy with the de�nition of the process with orthogonal increments, we
can de�ne the function families with orthogonal increments if under \increment"
of the function family G�(t; �) = fg�(t; �); t 2 [0; 1]g on (t1; t2) one means the
di�erence G�(t2; �)� h(t2)=h(t1) �G�(t1; �), and the inner product is de�ned in the
usual way as in L2(dv). Then condition (17) means that the family G� from (15)
has the orthogonal increments. In that way we proved:

Theorem 3. Let X be a Markov process, and let family G from (2) be com-
plete with respect to the Lebesgue measure, and family G� from (15) has orthogonal
increments. Then the process Y , de�ned by (1), is a Markov process.

Corollary 1. If X is a stohastic process with orthogonal increments, and

the family G� = fg�(t; �); t 2 [0; 1]g (where g�(t; v) =
tR
v

g(t; u)du) has orthogonal

increments, then the process Y , de�ned by (1) has orthogonal increments too.

It is easily seen that by \increment" of the function family G� = fg�(t; �); t 2
[0; 1]g on (t1; t2) one means the di�erence G�(t2; �)�G�(t1; �).

3. Some suÆcient conditions for continuity of the process Y. Here,
we determine the conditions related to the family G, from (2), under which the
process Y , de�ned by (1) is continuous, if X is continuous.

Let X(t) =
NX
i=1

tZ
0

hi(t; u)dZi(u) be the Hida-Cramer representation of X:

Then, according to (10)

Y (t) =

NX
i=1

tZ
0

� tZ
v

g(t; u)hi(u; v)du

�
dZi(v):

By Lemma 1, the process Y is continuous i� functions g�(t; v) =
tR
v

g(t; u)hi(u; v)du; i = 1; . . . ; N are continuous on t, for almost all v,
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i.e., if Leb fv :j g�(t; v)� g�(t0; v) j! 0; t! t0g = 1.

But, this is equivalent to

0 = lim
t!t0

� t0Z
v

[g(t; u)� g(t0; u)]hi(u; v)du+

tZ
t0

g(t; u)hi(u; v)du

�
=

=

t0Z
v

lim
t!t0

[g(t; u)� g(t0; u)]hi(u; v)du;

i.e., to the condition that all functions from family G are continuous in t for almost
all u. Thus, we have:

Theorem 4. Let X be a continuous second order stohastic process, and
let the functions from family G be continuous in the �rst argument for almost all
values of the second argument. Then, the process Y , de�ned by (1) is continuous.
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