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ON GRAPHS WHOSE SPECTRAL SPREAD DOES NOT EXCEED 4

Miroslav M. Petrovi�c

Abstract. In this paper all minimal graphs with the property of having the spectral spread
greater than 4 are determined. In addition, all connected graphs whose spactral does not exceed
4 are described.

1. Introduction

All considered graphs are undirected graphs without loops or multiple edges.
By eigenvalues of a graph G we mean eigenvalues of its 0{1 adjacency matrix
A. The spectral spread (brie
y the spread) s(G) of G is the spread s(A) of its
adjacency matrix A, i.e. s(G) = s(A) = r(G)��(G), where r(G) and �(G) are the
largest and the least eigenvalue of G. For de�nition and properties of the spread
of matrices, one can consult [3].

J. H. Smith [4] has determined all graphs whose largest eigenvalue does not
exceed 2; after that D. Cvetkovi�c, M. Doob and I. Gutman [1] have determined all
minimal graphs with the property of having the largest eigenvalue greater than 2.
In this paper we extend their results in some sense.

Let H be a proper induced subgraph of G. By virtue of the well known
Interlacing Theorem (see [2] for example) it follows that r(G) � r(H) and �(G) �
�(H), i.e. s(G) � s(H). Thus for any real number L > 0 we may consider the
graphs with s(G) > L that are minimal with respect to that property. In this
paper we shall �nd all such graphs for L = 4.

We consider also the following question: For a real number L > 0 �nd all
graphs with s(G) � L. We give an explicit description of the connected graphs G

satisfying s(G) � 4. Combining this with the results of Smith [4], we see that there
are exactly �ve graphs with r(G) > 2 and s(G) � 4.

2. Minimal connected graphs with s(G) > 4

Recall that a graph is minimal with respect to (brie
y w.r.t.) the property P if
it has the property P and none of its proper induced subgraphs has this property.
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Now we determine all connected minimal graphs w.r.t. the property of having
the spread greater than 4.

The determination of minimal trees with the spread greater than 4 is equiva-
lent to the determination of minimal trees with the largest eigenvalue greater than
2.

Lemma 1. (Cvetkovi�c, Doob, Gutman [1]) There are exactly 9 minimal trees

w.r.t. the property of having the spread greater than 4 and these are the graphs

G22 �G30 displayed in Fig. 1.�

Theorem 1. There are exactly 30 minimal connected graphs w.r.t. the prop-

erty of having the spread greater than 4 and they are displayed in Fig. 1.

Fig. 1

Proof . It is easy to check that the graphs G1 � G30 in Fig. 1 are minimal
graphs w.r.t. the property of having the spread greater than 4.

We prove that if a connected graph G is a minimal graph with the spread
greater than 4, then G is one of the graphs G1 � G30 in Fig. 1. Lemma 1 takes
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care of the case when G is a tree. Hence, it is enough to consider the graphs with
circuits.

Let G be a connected minimal graph with the spread greater than 4 and let
n be the length of the shortest circuits of G . We denote the vertices of an arbitrary
circuit Cn of G by v1; . . . ; vn, so that the vertices vi and vi+1(i = 1; . . . ; n�1)); v1
and vn are adjacent. Let Ti1...ik (1 � i1 < � � � < ik � n; 1 � k � n) be the set of
vertices from V (G)nV (Cn) which are adjacent exactly to the vertices vi1 ; . . . ; vik
of Cn. Let T0 be the set of vertices from V (G)nV (Cn) which are not adjacent to
any vertex of Cn. We distinguish the following �ve cases:

Case 1: n = 3. If at least one of the sets Tij(1 � i < j � 3) is nonempty,
then the graph G1 is an induced subgraph, and hence eqauls G. Let Tij = ?(1 �
i < j � 3). Then if j T123 j� 2 and no two vertices of T123 are adjacent, G contains
the proper induced subgraph G1 contradicting the minimality condition. Thus, if
j T123 j� 2, the graph G2 is contained in (and hence equals) G. If j T123 j= 1, then
G is G3. Let T123 = ?. If some of the sets Ti (1 � i � 3) contains more than
one vertex, then G is either G4 or G5. Let j Ti j� 1 (1 � i � 3). Having in mind
symmetric cases, we distinguish the following cases:

1Æ j T1 j= 1; T2 = T3 = ?. If the set T0 contains two vertices adjacent to the
vertex x 2 T1, then G is either G6 or G7. If T0 contains only one vertex adjacent
to the vertex x 2 T1, then G is G8.

2Æ j T1 j=j T2 j= 1; T3 = ?. If the vertices x 2 T1 and y 2 T2 are adjacent,
then G is G9. If the vertices x and y are not adjacent, then G is either G10 or
G11.

3Æ j T1 j=j T2 j=j T3 j= 1. If at least two vertices between x 2 T1; y 2 T2 and
z 2 T3 are adjacent, then G contains the proper induced subgraphG9 contradicting
the minimality condition. Therefore G is G12.

Case 2: n = 4. Then T12 = T14 = T23 = T34 = T123 = T124 = T134 = T234 =
T1234 = ? because G has not triangles. If at least one of the sets Ti(1 � i � 4) is
nonempty, then G is G13. Let Ti = ?(1 � i � 4). If T13 6= ? and T24 = ?, then
G is G14. If T13 6= ? and T24 6= ?, then G contains the proper induced subgraph
G14 contradicting the minimality condition.

In the orders cases (n � 5) we have that Ti1...ik = ? (1 � i1 < . . . < ik �
n; 2 � k � n), because G does not contain circuits whose length is less than n.
If at least one of the sets Ti(1 � i � n) contains more than one vertex, then G

contains the proper induced subgraph G23 contradicting the minimality condition.
Let j Ti j� 1 (1 � i � n).

Case 3: n = 5. Now, if at least two of the sets Ti(1 � i � 5) are nonempty,
then G is one of the graphs G15; G16; G17. If exactly one of the sets Ti(1 � i � 5)
is nonempty, then G is G18.

Case 4: 6 � n � 8. Then for n = 6; 7; 8 the graphs G19; G20 and G21,
respectively, are contained in (and hence are equal to) G.
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Case 5: n � 9. Then G contains the proper induced subgraph G29 contra-
dicting the minimality condition.

This completes the proof of Theorem 1. �

3. Graphs whose spread does not exceed 4

In this section we determine all connected graphs whose spread does not
exceed 4. In the proof of Theorem 2 we use the following lemma.

Lemma 2. (Smith [4]) Let G be a graph with the largest eigenvalue r(G).
Then r(G) � 2 if and only if each component of G is an induced subgraph of one

of the graphs H6 �H11 displayed in Fig. 2. �

Theorem 2. Let G be a connected graph with the spread s(G). Then s(G) �
4 if and only if G is an induced subgraph of one of the graphs displayed in Fig.2.

Fig. 2

Proof . Lemma 2 takes care of the case when G is a tree. Namely the
determination of the trees with the spread less than or equal to 4 is equivalent to
the determination of the trees whose largest eigenvalue does not exceed 2. Hence,
it is enough to consider the graphs with circuits.

It is easy to check that the graphs H1 � H11 have the spread less than or
equal to 4. Consequently, each induced subgraph of these graphs has the spread
less than or equal 4.

Conversely, let G be a connected graph with circuits, whose spread does not
exceed 4. To describe G, we use the method of impossible subgraphs. We note that
G does not contain any of the graphs G1 � G30 depicted in Fig. 1, as an induced
subgraph. The denotation and scheme of the proof are the same as in Theorem 1.

Let Cn be the smallest circuit in G. We distinguish the following four cases:
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Case 1: n = 3. We have Tij = ? (1 � i < j � 3) since otherwise G would
contain the induced subgraph G1. Moreover, the sets Ti(1 � i � 3) can contain at
the most one vertex (otherwise G would contain G4 or G5 as an induced subgraph);
thus, j Ti j� 1(1 � i � 3). Next, the set T123 can contain at the most one vertex,
too (otherwise G would contain G1 or G2 as an induced subgraph).

By a direct veri�cation, we determine the mutual relations between the cor-
responding sets. First, the vertices of Ti and Tj(1 � i < j � 3) cannot be adjacent
(otherwise G would containG9 as an induced subgraph). Next, the sets Ti and T123
are not consistent (otherwise G would contain G1 or G3 as an induced subgraph).

Taking into account all possible combinations and having in mind symmetry,
we distinguish the following subcases:

1Æ T1 = T2 = T3 = T123 = ?. Then G = C3.

2Æ j T1 j= 1; T2 = T3 = T123 = ?. Then j T0 j� 1, because otherwise G

would contain at least one of the graphs G6; G7; G8 as an induced subgraph. Thus,
either G = H1 or G = H2.

3Æ j T123 j= 1; T1 = T2 = T3 = ?. In this case T0 = ? (otherwise G would
contain G3 as an induced subgraph). Thus, G = H4.

4Æ j T1 j=j T2 j= 1; T3 = T123 = ?. Then T0 = ?, because otherwise G

would contain G10 or G11 as an induced subgraph. Hence, G = H3.

We note that the combination j T1 j=j T2 j=j T3 j= 1; T123 = ? is impossible.
Indeed, in the contrary case G would contain G12 as an induced subgraph.

Case 2: n = 4. Then Ti = ?(1 � i � 4), because otherwise G would contain
G13 as an induced subgraph. Besides, T13 = T24 = ?, because in the contrary case
G would contain G14 as an induced subgraph. Thus, G = C4.

Case 3: n = 5. Then j Ti j� 1 (1 � i � 5), because otherwise G would
contain G23 as an induced subgraph. Moreover, the sets Ti and Tj(1 � i < j � 5)
are not consistent (in the contrary case G would contain at least one of the graphs
G15; G16; G17 as an induced subgraph). Thus, we have only two possibilities:

1Æ Ti = ?(1 � i � 5). Then G = C5.

2Æ j T1 j= 1; Ti = ?(2 � i � 5). In this case T0 = ?, because otherwise G

would contain G18 as an induced subgraph. Thus, G = H5.

Case 4: n � 6. Then Ti = ?(1 � i � n). Indeed, in the contrary case G

would contain the graphs G19; G20 and G21 for n = 6; 7; 8, respectively, and the
graph G29 for n � 9. Thus, G = Cn.

This completes the proof of the theorem. �

Corollary. There are exactly �ve connected graphs with r(G) > 2 and

s(G) � 4 and these are the graphs H1 �H5 displayed in Fig. 2.
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4. Minimal disconnected graphs with s(G) > 4

In this section we determine all disconnected minimal graphs w.r.t. the prop-
erty of having the spread greater than 4.

Let Cn be a circuit of length n; Pn a path of length n�1; Sn a star with n+1
vertices and Vm:n and Wn the graphs displayed in Fig. 3.

Fig. 3

Theorem 3. There are exactly 17 disconnected minimal graphs w.r.t. the

property of having the spread greater than 4. These are

(1)

H1 [ C4; H1 [ C6; H1 [ P7; H1 [ V1;2; H1 [ S4;

H2 [ P6; H3 [ P5; H3 [ S3; H4 [ P3; H5 [ C4;

H5 [ C6; H5 [ C8; H5 [ P9; H5 [ V1;3; H5 [ V2;2;

H5 [W2; H5 [ S4:

Proof . It is easy to check that all graphs (1) are minimal graphs w.r.t. the
property of having the spread greater than 4.

Let G be any disconnected minimal graphs with the spred greater than 4.
Then G satis�es the following conditions:

1) G has exactly two component, i.e. G = G1 [ G2 and r(G1) 6= r(G2),
�(G1) 6= �(G2) hold. Supposing r(G1) > r(G2), we have that �(G1) > �(G2).

2) Each component has the property

s(Gi) = r(Gi)� �(Gi) � 4 (i = 1; 2):

By Theorem 2 we conclude that each component is an induced subgraph of one of
the graphs displayed in Fig. 2.

3) At least one of components has the largest eigenvalue greater than 2.

4) G1 is one of the graphs H1 �H5 from Fig. 2, because they are only con-
nected graphs which satisfy 2) and 3).

5) G2 is a minimal graph w.r.t. the property �(G2) < r(G1)� 4.

We distinguish the following �ve cases:

1Æ G1 = H1. Then G2 is one of the graphs C4; C6; P7; V1;2 and S4, because
they are only graphs which satisfy conditions 2) and 5).

2Æ G1 = H2. Since H1 is a proper induced subgraph of H2, then G2 satis�es
2), 5) and relation

(2) �(G2) > r(H1)� 4:
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The graph P6 is the unique graph satisfying all the above conditions.

3Æ G1 = H3. In this case H1 is a proper induced subgraph of H3, too, so G2

must satisfy the conditions 2), 5) and (2). The graphs P5 and S3 are the unique
such graphs.

4Æ G1 = H4. Then P3 is the unique graph satisfying 2) and 5).

5Æ G1 = H5. Then G2 is one of the graphs C4; C6; C8; P9; V1;3; V2;2;W2 and
S4, since they are the unique graphs satisfying 2) and 5).

This completes the proof Theorem 3. �
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