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ON RINGS WITH POLYNOMIAL IDENTITY xn � x = 0

Veselin Peri�c

Abstract. If R 6= 0 is an associative ring with the polynomial identity xn � x = 0,
where n > 1 is a �xed natural number, then it is well known that R is commutative. It is also
known that any anti-inverse ring R( 6= 0) satis�es the polynomial identity x3 � x = 0 [1]. The
structure of anti-inverse rings was described in [2]: they are exactly subdirect sums of GF (2)'s
and GF (3)'s. In generalizing the last result, we prove here that a ring R with the polynomial
identity xn � x = 0 (> 1) is a subdirect sum of GF (p)'s, where pr � 1 divides n � 1. We also
prove again some known results about commutative regular rings.

We consider here the associative rings R 6= 0. These rings need not be
commutative and they can be without identity. In the polynomial identity xn�x =
0 we assume n to be a �xed natural number greater than 1.

Following B. Cerovi�c [1], a ring R is called an anti-inverse ring if every
element x in R has an anti-inverse x� in R : x�xx� = x and xx�x = x�. From
this de�nition the following well known lemma is immediately inferred:

Lemma 1. ([2]). In any anti-inverse ring R the following identities are valid:

x2 = x�2 = (xx�)2 = (x�x)2.

Especially, any anti-inverse ring R satis�es the polynomial identity x5�x = 0.

According to the well known Jacobson's Theorem, from the preceding lemma
we have also the following well known lemma:

Lemma 2. Every ring R with the polynomial identity xn � x = 0 is commu-

tative. Especially, any anti-inverse ring R is commutative.

From the two preceding lemma we obtain the following proposition, already
known in the literature:
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Proposition 1. ([1, prop. 2.2] and [2]) A ring R is an anti-inverse ring if

and only if it satis�es the polynomial identity x3 � x = 0.

The anti-inverse rings were characterized in [2] in the following manner:

Proposition 2. ([2]) The following are equivalent:

(1) R is an anti-inverse ring;

(2) R is a subdirect sum of GF (2)'s and GF (3)'s;

(3) R satis�es the polynomial identity x3 � x = 0

In generalizing the part of this proposition asserting the equivalence between
(2) and (3), we prove here the following theorem:

Theorem: For a ring R the following conditions are equivalent:

(i) R is a ring with the polynomial identity xn � x = 0;

(ii) R is a subdirect of �elds GF (pr), where pr � 1 divides n� 1.

For the proof of this theorem we need a certain preparation and we start with
the following lemma:

Lemma 3. Let R be a subdirectly irreducible ring. Then R is without proper

zero divisors if and only if R has no nonzero nilpotent elements.

Proof . If R is without proper zero divisors, then it is clear that R has no
nonzero nilpotent elements.

Conversely, let R be without nonzero nilpotent elements. Then for any subset
S of R the left annihilating set of S coincides with the right annihilating set of S,
and hence it is an ideal of R, the annihilating ideal annR(S) of S in R. Suppose
the set A of all proper zero divisors in R is not void. For any a in A the
annihilating ideal annR(a) is a singular ideal in R di�erent from (0) and contains
no regular elements b in R. By hypothesis a 62 annR(a) for any a in A, and hence
\a2AannR(a) = (0). Consequently, R would not be a subdirectly irreducible ring.

If R is a ring with the polynomial identity nn � x = 0, or a commutative
regular ring (a ring with identity having for any x in R an element x0 in R with
xx0x = x), then surely R has no nonzero nilpotent elements. If moreover such a
ring is subdirectly irreducible, then R is without proper zero divisors according to
the preceding lemma. But in this case R is a �eld, because it is a �nite commutative
ring having at most n elements, or according to x(x0x � 1) = 0, a commutative
ring in which any nonzero element x is invertible.

So, for commutative regular rings we have the following proposition:

Proposition 3. A commutative regular ring R is subdirectly irreducible if

and only if it is a �eld .

This proposition is implicitely contained in [2].

Proposition 4. R is a subdirectly irreducible ring with polynomial identity

xn � x = 0 if anf only if R = GF (pr), where pr � 1 divides n� 1.
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Proof . Let R = GF (pr); pr� 1 divides n� 1. Then R is surely a subdirectly

irreducible ring. Moreover (R;: ) is a cyclic group of order pr�1, and hence xp
r�1

=
1(x 2 R). Since pr � 1 divied n � 1 we have xn�1 = 1(x 2 R), which means
xn = x(x 2 R).

Conversely, let R be a subdirectly irreducible ring with polynomial identity
xn � x = 0. According to the remark following Lemma 3, R is a �nite �eld having
at most n elements; hence, R = GF (pr). The generating element g of the cyclic
group (R:) of order pr � 1 has the same order, and because gn � g = 0, i.e.,
gn�1 = 1; pr � 1 must divide n� 1.

We can now prove our theorem.

(i) implies (ii): As it is known, R is a subdirect sum of subdirectly irreducible
rings Ri(i 2 I). The ring R satis�es the polynomial identity xn�x = 0, and since
any Ri is an epimorphic image of R, it satis�es that identity too. According to
Proposition 4, any Ri has form GF (pr), where pr � 1 divides n� 1.

(ii) implies (i): According to Proposition 4, any of the rings GF (pr), where
pr�1 divides n�1 satis�es the polynomial identity xn�x = 0; hence, the subdirect
sum R of these rings itself satis�es that identity.

As the implication \(i) implies (ii)" is proved using Proposition 4, we can
prove again the following proposition using Proposition 3:

Proposition 5. Any commutative regular ring R is a subdirect sum of �elds.

This proposition is not new and is implicitly contained in [3] (see leater). We
observe that the converse of this proposition need not be true. Indeed, a subdirect
sum of �elds need not not have an identity (for instance the direct sum of in�nitely
many �elds has no identity). But also when a subdirect sum of (in�nitely many)
�elds has an identity, it need not be a (commutative) regular ring. Namely, if
f : R!

Q
t2I Ri is the monomorphism de�ning R as a subdirect sum of the �elds

Ri(i 2 I) and f(x) = (xi)i2I , then for x0 in R with x2x0 = x we could have
f(x0) = (x0i)i2I where x0i = x�1i for xi 6= 0. But, such an element (x0i)i2I need not
belong to f(R).

Moreover, it is well known that a commutative ring R with identity is a
subdirect sum of �elds if and anly if the Jacobson radical of R is equal to (0) ([3],
Coroll. 2.11). But in such a ring any prime ideal need not be maximal, and hence
such a ring need nor be a (commutative) regular) ring ([3, Prop. 2.2.3 and 2.2.4]).

We remark �nally that hawing in mind Proposition 1 (whose proof as we have
seen is simple), our theorem contains Proposition 2, as a special case. Indeed, for
n = 3, from the condition pr � 1 divides n � 1 it follows that p � 2; r = 1, or
p = 3; r = 1, and conversely. Proposition 2, was proved by Tominaga [2] and it
covers all results of [1] related to anti-inverse ring. Our theorem covers also these
results of [1] related to the rings with polynomial identity xn � x = 0.
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