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CONDITIONS FOR THE INTEGRABILITY OF SECOND ORDER

NONLINEAR DIFFERENTIAL EQUATION, II

Vlajko Lj. Koci�c

Abstract. Conditions for the integrability of second order nonlinear di�erential equation
(0:1) are derived. The obtained result contains, as a special cases a number of known results.

0. In this paper we continue the investigation of integrability of non- linear
second order di�erential equations. We consider the following equation:

(0.1) y00 + P (y)y
02 +Q(x; y)y0 +R(x; y) = 0;

where P;Q;R are given functions.

Equations of this type were considered in a number of papers (see [1-16]).
Only in Kamke's collection [1] 103 equations of the form (0.1) are noted. Also,
Painlev�e [2] considered many equations of the same form.

We purpose a method for solving equation (0.1) by reducing it to an equation
of the form:

(0.2) Y 00 +A(Y; x)Y 0 +B(Y; x) = 0;

which is considered in [5]. In [5] was proved that the equation (0.2) can be reduced
to the autonomous equation

(0.3) d2z=dt2 + f(z)dz=dt+ g(z) = 0

by means of transformations

(0.4) y = q(x)z(t) + r(x); dt = p(x)dx;

if the following conditions are ful�lled:

A(Y; x) = pf((Y � r)=q) � 2q0=q � p0=p;(0.5)

B(Y; x) = p2qg((Y � r)=q) � (q00=q +A(Y; x)q0=q)(Y � r) � (r00 +A(Y; x)r0)
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(r; g are some functions depending of one variable, p is a di�erentiable function of
x; q; r are twice di�erentiable functions of x).

In Section 1 we shall derive the conditions for the integrability of (0.1) by
using the above result from [5]. Also, some remarks and examples are given.

A certain special class of equations of the form (0.1) is treated in Section 2.
Some particular cases are given and compared with some known results from [7-9],
[13-17].

1. Substituting, in (0.1)

(1.1) Y = F (y);

where

(1.2) F (y) = K(

yZ

y0

exp(

yZ

y0

P (y)dy)dy + L)

(K;L are constants) we obtain (0.2), where the functions A;B are given by:

A(K(

yZ

y0

exp(

yZ

y0

P (y)dy)dy + L); x) = Q(x; y);

B(K

yZ

y0

exp(

yZ

y0

P (y)dy)dy + L); x) = K exp(

yZ

y0

(P (y)dyR(x; y)(1.3)

This means that the equations (0.1) and (0.2) are equivalent.

Furthermore, using (0.3) | (0.5) and (1.1) | (1.3), we conclude that (0.1)
can be reduced to the autonomous form if the functions Q;R are given by:

Q(x; y) = pf((F (y)� r)=q)� 2q0=q � p0=p;(1.4)

R(x; y) = p2qg((F (y)� r)=q)=F 0(y)� (q00=q +Q(x; y)q0=q)(F (y)� r))�

�(r00 +Q(x; y)r0):

In this case under the transformation

(1.5) F (y) = q(x)z(t) + r(x); dt = p(x)dx;

where F is given by (1.2), the equation (0.1) reduces to the autonomous equation
(0.3).

Then we obtain that the general solution of (0.1) is given by:

(1.6)

Z
(U(F (y)� r)=q; C)�1d((F (y)� r)=q) =

Z
p(x)dx +D;
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(C;D) are arbitrary constants), u = U(z; C) is the general solution of the �rst
order equation

(1.7) u(z)du=dz + f(z)u(z) + g(z) = 0

Remarks and examples . Here are some remarks and examples related to the
above result.

10 Equation

(1.8) y00 + P (y)y
02 + a(x)y0 + b(x)T (y) = 0;

under the transformation (1.1) | (1.2) reduces to the

Y 00 + a(x)Y 0 + b(x)S(Y ) = 0

where S(F (y)) = F 0(y)T (y). If b(x) = k exp(�2
R
a(x)dx)(k =const) then the

above equation is integrable (see e.g. [5, 10, 11]), so in this case, (1.8) is also
integrable. This result is also obtained by J. D. Ke�cki�c [10] and by L. M. Berkovi�c
and N. N. Rozov [11].

20 In Kamke's collection [1] 103 equations of the type 0.1 are noted. These
are equations (6.45)|(6.53), (6.86), (6.107),(6.109)|(6.131), (6.137)|(6.153),
(6.155)|(6.176), (6.179), (6.180), (6.183)|(6.186), (6.189)|(6.192), (6.196)|
(6.204), (6.206), (6.207), (6.210), (6.212)| (6.215), (6.222)|(6.224). Many of
these equations can be solved by applying the above result.

30 Let r(z) = 0 and Q(x; y) = a(x). Then the following equation

y00 + F 00(y)F 0(y�1y
02 + a(x)y0 + c exp(�2

Z
a dx)q�3F 0(y)�1g(F (y)=q)�

�(q00=q + a(x)q0=q)F (y)F 0(y)�1 = 0; (c = const)

has the general solution

(1.9)

Z
(�2

Z
g(F=q)d(F=q) + C)�1=2d(F=q) =

Z
q�2 exp(�

Z
a dx)dx +D

(C;D are arbitrary constants, F = F (y)).

In particular, the following equations

y00 + (k � 1)y�1y
02 + a(x)y0 + c exp(�2

Z
a dx)y1�kq�3g(yk=q)�

�(q00=q + a(x)q0=q)y=k = 0;

y00 + ky
02 + a(x)y + c exp(�2

Z
adx)q�3e�kyg(eky=q)� (q00=q + a(x)q0=q)=k = 0

y00�y
02=y+a(x)y0+c exp(�2

Z
adx)yq�3g(log y=q)�(q00=q+a(x)q0=q) log y=y=0
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have the general solutions given by (1.9), where F (y) = yk; F (y) = eky;
F (y) = log y, respectively. The above equations (�rst and third) appear in [12].

40 Equations

y00 + F 00(y)F 0(y)�1y2
0

+ a(x)y0 +

mX
i=1

bi(x)F (y)
niF 0(y)�1 = 0;

y00 + ky2
0

+ a(x)y0 +
mX
i=1

bi(x) exp((ni � 1)ky)=k = 0;

y00 + (k � 1)y�1y
02 + a(x)y0 +

mX
i=1

bi(x)y
(ni�1)k+1=k = 0;

where
(1.10)

bi(x) = ci exp(�2

Z
a dx)(C1 + C2

Z
exp(�

Z
a dx)dx + C3(

Z
exp(�

Z
a px)dx)2)

(C1; C2; C3; ci; ni) are constants, i = 1; . . . ;m), are integrable by quadratures.

The above equations are equivalent to

Y 00 + a(x)Y 0 +

mX
i=1

bi(X)Y ni = 0;

which is also integrable if bi have the form (1.10) ( see [5]).

5Æ Let q(x) = 1, and Q(x; y) = a(x). Then the following equation

y00 + F 00(y)F 0(y)�1y
02 + a(x)y + c exp(�2

Z
a dx)F 0(y)�1g(F (y)� r)�

�(r00 + a(x)r0)F 0(y)�1 = 0; (c = const)

has the general solution

(1.11)

Z
(�2

Z
g(F � r)d(F � r) + C)�1=2d(F � r) =

Z
exp(�

Z
a dx)dx +D

(C;D are arbitrary constants).

6Æ Equations

y00 + F 00(y)F 0(y)�1y
02 + a(x)y0 +

mX
i=1

bi(x) exp(niF (y))F
0(y)�1 = 0;

y00 � y
02=y + a(x)y0 +

mX
i=1

bi(x)y
ni+1 = 0;

where ni(i = 1; . . . ;m) are constants and bi are given by

bi(x) = ci exp(�2

Z
a dx� nir(x)) (ci; ni are constants i = 1; . . . ;m)(1.12)

r(x) = C1 + C2

Z
exp(�

Z
a dx)dx+ C3(

Z
exp(�

Z
a dx)dx)2
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(C1; C2; C3 are constants), are integrable. This follows from the equation

Y 00 + a(x)Y 0 +

mX
i=1

bi(x) exp(niY ) = 0;

which is integrable if bi iz given by (1.12) (see [5]).

2. Let he equation (0.2) be of the form:

(2.1) Y 00 + a(x)Y 0 + b(x)Y + c(x)Y 00 = 0 (n = const);

(a; b; c are given functions). Equation of the type (0:1) corresponding to (2.1) is:

(2.2) y00 + P (y)y
02 + a(x)y0 + b(x)Q1(y) + c(x)Q2(y) = 0;

where P;Q1; Q2, satisfy the following system

(2.3) Q0

1(y) = 1� P (y)Q1(y); Q1(y)Q
0

2(y) = (n� P (y)Q1(y))Q2(y):

Equation (2.2) | (2.3) reduces to the (2.1) by the transformation

(2.4) Y = F (y) = (Q2(y)=Q1(y))
1=(n�1):

For the equation (2.1) the following result is known (see e.g. [7]):

Equation (2.1) has the solution Y = u(x)Z(v(x)=u(x)), where u and v are
linearly independent solutions of the linear equation:

(2.5) u00 + a(x)=u0 + b(x)u = 0:

with the Wronskian W = v0u � u0v; Z is a solution of the following nonlinear
equation

(2.6) d2Z=dt2 + h(t)Zn = 0;

where h is determined by

(2.7) h(v(x)=u(x)) = u(x)n+3c(x)W�2:

Using the above we can formulate the following result for the equation (2.2)|
(2.3):

Equation (2.2)|(2.3) has the solution

(2.8) F (y) = u(x)Z(v(x)=u(x));

where u and v are linearly independent solutions of (2.5); F is given by (2.4); Z
satis�es the equation (2.6)|(2.7).

Remarks and examples. 1Æ Using (2.4) we obtain that the equation (2.2)|
(2.3) can be represented in the following form:

y00 + F 00(y)F 0(y)�1y
02 + a(x)y0 + b(x)F (y)F 0(y)�1 + c(x)F (y)nF 0(y)�1 = 0:
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2Æ Let h(t) = k(C1 + C2t + C3t
2)�(n+3)=2(k; C1; C2; C3;= const). Then the

equation (2.6) is integrable by quadratures (see e.g. [7]) and from (2.7) we �nd the
function c:

(2.9) c(x) = kW 2(C1u
2 + C2uv + C3v

2)�(n+3)=2:

In this case the equation (2.2) | (2.3) | (2.11) has the solution

(2.10) F (y) = (C1u
2 + C2uv + C3v

2)1=2U(

Z
(C1 + C2v=u+ C3v

2=u2)�1d(v=u));

where U(s) is given by

Z
(C � (C1C3 � C2

2=4)U
2 � 2kUn+1=(n+ 1))�1=2dU = s+D (n 6= �1);

Z
(C � (C1C3 � C2

2=4)Y
2 � 2k log U)�1=2dU = s+D (n = �1):(2.11)

(C;D are arbitrary constants, F is given by (2.4)).

3Æ Furthermore, let

(2.12) c(x) =W 2u�n�3(

mX
i=1

(ai(v=u)
bi)q

mX
i;j=1

Aij(v=u)
Bij );

where q = k(1�n)� 2; Aij = kaiajbi(1� bi+(1� k)bj); Bij = bi+ bj � 2; k; ai; bi
are constants (i; j = 1; . . . ;m).

In this case the equation (2.2)|(2.3)|(2.12) has the solution:

(2.13) F (y) = u(

mX
i=1

ai(v=u)
bi)k

where F is determined by (2.4).

4Æ In particular if C1 = 1; C2 = C3 = 0, the equation (2.2) | (2.3) | (2.9)
becomes

(2.14) y00 + P (y)y
02 + a(x)y0 + b(x)Q1(y) + k(W 2u�n�3Q2(y) = 0

(P;Q1; Q2 satisfy (2.3)) and has the general solution given by (2.10) | (2.11). with
C1 = 1; C2 = C3 = 0.

In the special case n = �3 the equation (2.14) reduces to the well known
Herbst's equation (see e.g. [3, pp. 62{64], [4, pp. 187{188] [6, 8, 9]). Also, from
the above we obtain the general solution of the Herbst's equation.

If a(x) = 0; b(x) = b=const, c(x) = c =const and n = 3 equation (2.14) |
(2.3) reduces to the equation (2.5) from [15].

5Æ Let P (y) = (p� 1)=y (p 6= 0). Then the equation (2.2) becomes

(2.15) y00 + (p� 1)y�1y
02 + a(x)y0 + b(x)p�1y = c(x)p�1y(n�1)p+1 = 0:
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In this case F (y) = yp. Some special cases of the equation (2.15) with c(x)
given by (2.15) and k = 2=(n � 1), i.e. q = 0 are treated in [13, 14, 15]. These
results can be obtained as a particular cases of the above. Also, equation (2.15) is
treated in [17].
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