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LINEARIZATION OF NONLINEAR DIFFERENTIAL EQUATIONS, IV:

NONLINEAR SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

EQUIVALENT TO LINEAR BASE EQUATION

Vlajko Lj. Koci�c

1. Introduction. The linearization as a method for solving some nonlinear
di�erential equations (partial and ordinary) is well known in the theory of di�er-
ential equations. Already Painlev�e, in his classical papers [1, 2, 3] quoted several
examples of linearization of nonlinear di�erential equations; Kamke [4], lists over
twenty nonlinear ordinary di�erential equations whose solutions are expressed as
function of solutions of the corresponding linear equations; by classical transforma-
tions such as Kircho�'s, B�acklund's, some nonlinear partial equations are reduced
to linear ones (see, for example [6]). However, only upon the appearance of Pin-
ney's note [7] in 1950, this topic developed suddenly. This note was the starting
point for numerous investigations these last years [8-24].

In several papers [15-24] the authors investigated the problems of the follow-
ing type:

Construct a nonlinear di�erential equation of the form

(1.1) �(zx1x1 ; . . . ; zxnxn ; zx1 ; . . . ; zxn ; z; h(u; v)W
2; x1; . . . ; xn) = 0;

where u; v are particular solutions of the linear equation with functional coeÆcients:

(1.2) Lu =
nX

i;j=1
i�j

Aijuxixj +
nX

i=1

Biuxi + Cu = 0;

W is a generalization of the Wronskian (see, for example, [17]) de�ned by

(1.3) W 2 =

nX
i;j=1
i�j

Aij(vxiu� uxiv)(vxju� uxjy);
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h is given homogenous function in two variables, having the solution in the form

(1.4) z = F (u; v) (F is given function):

The linear eqaution (1.2) is called the \base equation".

For di�erent functions F , which for all investigated cases were homogeneous,
the equations of the type (1.1) were constructed. Particularly, the case of ordinary
di�erential equations was investigated [18-21, 24], as well as the case of partial [15{
17, 22, 23]. The results were also applied for solving some problems of quantum
mechanics, thermodynamics, etc.

Since in all above mentioned papers only the particular cases were investi-
gated, naturally the following general problem arises: Determine the necessary and
suÆcient conditions so that the equation.

(1.5) zx1x1=f(zx1x2 ; . . .; zxnxn ; zx1 ; . . .; zxn ; z; h(u; v)w1; . . .; h(u; v)wn; x1; . . .; xn)

has the solution (1.4), where u; v are linearly independent particular solutions of
linear equation (1.2),homogeneous function of two variables of order k; wi = vxiu�
uxiv(i = 1; . . . ; n).

Remark 1. Equation of the form (1.5) is more general than (1.1). The as-
sumption that zx1x1 appears of the left hand side is taken due only to technical
reasons and the generality is not decreased. In connection with that we assume
A11 = �1. Also, we suppose that functions F and f have the continuous third
order derivatives, which, having in view the nature of the problem, is justi�ed.

In further text we shall use the following notations:

X0

i;j

aij =

nX
i;j=1
i�j

aij ;
X
i:j

aij =

nX
i;j=1

aij ;
X
i

ai =

nX
i=1

ai:

In the present paper we shall give the complete solution of the posed problem.
Also, we give a number of applications of the main theorem. Our result is compared
to many known results.

2. The main theorem. Theorem 1. Equation (1.5) has the solution

z = F (u; v), where u; v are arbitrary linearly independent particular solutions of

(1.2), if and only if it has the form:

(2.1)
X0

i;j

Aij(zxixj + P (z)zxizxj ) +
X
i

Bizxi + CQ(z) +DR(z) = 0;

where P;Q;R satisfy the conditions

(2.2) 1� PQ = Q0; R0Q+ (2k + 3 + PQ)R = 0;

Aij ; Bi; C;D are functions of x1; . . . ; xn and

(2.3) D = KW 2h(u; v)2; (K = const.):
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In this case the function F is determined by

(2.4) Q(F )=R(F ) = (uG(v=u))2k+4;

where G satis�es the ordinary di�erential equation

(2.5) G00(t) +KH(t)2G(t)�2k�3 = 0

and H is given by

(2.6) h(u; v) = ukH(v=u):

Proof. We shall give only an outline of the proof. First, we assume that
z = F (u; v) satis�es (1.5), where u; v are arbitrary linearly independent particular
solutions of (1.2). Than the following condition must be satis�ed:

X0

i;j
i6=1

Aij(Fuuxixj ) + Fvvxixj +
X
i

Bi(Fuuxi + Fvvxi)

(2.7)

+ C(Fuu+ Fvv) + Fuuu
2
x1 + 2Fuvux1vx1 + Fvvvx

2
1

=f((Fuux1x2+Fvvx1x2+Fuuux1ux2)+Fuv(ux1vx2 + ux2vx1 + Fvvvx1vx2);

. . . ; (Fuuxnxn + Fvvxnxn + Fuuu
2
xn + 2Fuvuxnvxn + Fvvv

2
xn);

(Fuux1+Fvvx1); . . . ; (Fuuxn + Fvvxn); F; h(u; v)w1; . . . ; h(u; v)wn; x1; . . . ; xn):

Di�erentiating (2.7) twice with respect to variables uxixj and vxixj (i �
j; i; j = 1; . . . ; n) we �nd that f has the form

f(s1;2; . . . ; snn; s1; . . . ; sn; t1; . . . ; tn; s; x1; . . . ; xn)(2.8)

=
X0

i;j
i6=j

Aijsij + p(s1; . . . ; sn; t1; . . . ; tn; s; x1; . . . ; xn):

Furthermore, substituting f , given by (2.8), into (2.7) we obtain the con-
dition which must be satis�ed by p. From the second derivative with respect to
variables uxi ; vxj (i; j = 1; . . . ; n), from this relation we �nd that p has the form:

p(s1; . . . ; sn; t1; . . . ; tn; s; x1; . . . ; xn) =
X0

i;j

(Q1
ijsisj +Q3

ijtitj)+

+
X
i;j

Q2
ijsitj +

X
i

(R1
i si + (R2

i ti) + T;

where the functions Q1
ij ; Q

2
ij ; Q

3
ij ; R

1
i ; R

2
i ; T depend on s; x1; . . . ; xn.

Substituting so obtained p into (2.7) and (2.8) we �nd the following:

Q1
ij = AijP (s); Q

2
ij = R2

i = 0; Q3
ij = AijKR(s); R1

i = Bi; T = CQ(s);
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(i; j = 1; . . . ; n), where P;Q;R satisfy (2.2). Also, we have that F is determined
by (2.4), where (2.5) and (2.6) hold. This proves that the mentioned conditions are
necessary.

By a direct vari�cation we can show that the same conditions are suÆcient
which completes the proof of the theorem.

3. Corollaries. Now, we shall give certain corollaries and examples which
illustrate the theorem.

(i) Transformation Z = (Q(z)=R(z))1=(2k+4) reduces (2.1) to the equation

(3.1) LZ +DZ�2k�3 = 0;

which has the solution Z = uG(v=u); G satis�es (2.5), (2.6).

Equation (3.1) represents a \canonical equation" for this class of problems.
Namely, the main result can be formulated in the following way: the only equations
of the form (1.5) which have the solution z = F (u; v), are those obtained from (3.1)
by a transformation of unknown function Z = '(z).

(ii) Equation

(3.2)
X0

i;j

Aij(zxixj + (a� 1)zxizxj=z) +
X
i

Bizxi + Cz=a+Dzq=a = 0;

(q = �2(k + 2)a + 1; a =const.), is a special case of (2.1) and has the solution
z = (uG(v=u))1=a; G satis�es (2.5), (2.6).

Some particular cases of the above equation are studied in [15-17, 22, 23].

(iii) Specially, if

h(u; v)2 = u2k
� mX
i=1

ai(v=u)
bi
�r� mX

i;j=1

cij(v=u)
dij
�
;(3.3)

r = 2p(k + 2)� 2; cij = paiajbi(1� bi + (1� p)bj); dij = bi + bj � 2; p; ai; bi

are constants, then equation (3.2) has the solution

z = u1=a
� mX
i=1

ai(v=u)
bi
�p=a

:

The special cases m = 1; 2; 3 are treated in [15-17, 22, 23].

(iv) Equation (2.1), where D is given by

1Æ D = kW 2(C1u
2 + C2uv + C3v

2)k; C1; C2; C3 =const;

2Æ D = aW 2u2k�bvb; a; b =const;

3Æ D = aW 2u2k; a =const;

4Æ D = aW 2ukvk; a =const,

has the following solutions:
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1Æ Q(z)=R(z) = t(v=u)k+2
�
uA
�R

(t(v=u)�1d(v=u)
��2k+4

where t(v=u) = C1 + C2v=u+ C3(v=u)
2, and A is determined by

(3.4)

8>><
>>:

Z
(c+ C4A

2 + C5A
�2k�2)�1=2dA = s+ d; k 6= �1;

Z
(c+ C4A

2 � 2K log A)�1=2dA = s+ d; k = �1;

C4 = C2
2=4� C1C3; C5 = K=(k + 1); c; d are arbitrary constants.

In this case F containes two arbirtary constants. Specially, for c = 0, the solution
can be expressed in closed form

2Æ Q(z)=R(z) = (4a(k + 2)2=(b+ 2)(2k + 2� b))u2k+2�bvb+2.

3Æ Q(z)=R(z) = u2k+4A(v=u)2k+4, where A(s) is determined by (3.4), with
C1 = 1; C2 = C3 = C4 = 0.

4Æ Q(z)=R(z) = uk+2vk+2A(log(v=u))2k+4; A(s) is given by (3.4), with
C1 = C3 = 0; C2 = 1; C4 = 1=4.

(v) Equations

1Æ
P

0

i;j Aij(zxixj + azxizxj ) +
P
i
Bizxi + C=a+De�(2k+4)az=a = 0

2Æ
P

0

i;j Aij(zxixj � zxizxj=z) +
P
i
Bizxi +Cz log z +Dz(log z)�2k�3 = 0,

3Æ Lz +KW 2z�3 = 0,

4Æ Lz �W 2(C1u
2 + C2uv + C3v

2)�3z3 = 0,

where a; C1; C2; C3 are constants and D is given by (2.4), have the solutions:

1Æ z = log(uG(v=u))=a; G satis�es (2.5), (2.6),

2Æ z = exp(uG(v=u)); G satis�es (2.5), (2.6),

3Æ z = (cu2 + duv + (d2 �K)v2=4c)1=2; c; d arbitrary constants,

4Æ z = u(C1+C2v=u+C3v
2=u2)1=2A

�R
(C1+C2v=u+C3v

2=u2)�1d(v=u)
�
,

where A is determined by
R
(c + C4A

2 + A4=2)1=2dA = s + d(c; d are arbitrary
constants). In this case A is expressed by elliptic functions.

4. The case when u and v are functionally dependent. We shall
consider the case when u and v are connected by the relation:

(4.1) v = g(u)u;

where g is a twice di�erentiable function.

Since v satis�es (1.2), we �nd that u, besides (1.2) must satisfy the �rst
order partial di�erential equation

(4.2)
X0

i;j

Aijuxiuxj = Cu2g0(u)
�
ug00(u) + 2g0(u)

�
�1

= CT (u):
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Also, function D has the form

(4.3) D = KCu2k+6H
�
g(u)2g0(u)3(ug00(u) + 2g0(u)

�
�1

:

Furthermore, let us suppose that C and D satisfy the following

(4.4) D = LC (L = const:):

Then, equation (2.1), where D is given by (4.3), has the solution

(4.5) Q(z)=R(z) =
�
uG(g(u))

�2k+4
;

where G satis�es the equation

(4.6) G00(t) +B(t)G(t)�2k�3 = 0;

and B is determined by

(4.7) B
�
g(u)

�
= L

�
ug00(u) + 2g0(u)

�
g0(u)�3u�2k�6;

u is a common particular solution of (1.2) and (4.2).

Equations of the form (2.1) with (4.4) are very interesting due to numerous
applications, particulary in physics.

In papers [15-17, 22] only the case v = 1=u was treated.

5. Equations with constant coeÆcients. Let us study the equa-
tion (2.1) where Aij ; Bi; C; D are constants (i; j = 1; . . . ; n; i � j). Since
D = LC(L =const.) we can apply the result from the previous chapter. In con-
nection with that the following question rises: When, for given g, there exists u
which satis�es linear equation (1.2) and �rst order equation (4.2)?

In some special cases the answer to this question is aÆrmative. For example,
let us consider the case g(u) = ua; a =const, a 6= 0; �1.

Then equation (4.2) becomes

(5.1)
X0

i;j

Aijuxiuxj = Cu2=(a+ 1):

For exaple, a common solution of (1.2) and (5.1) is given by

(5.2) u =
mX
j=1

bj exp
�X

i

aijxi

�
;

where aij ; bj(i = 1; . . . ; n; j = 1; . . . ;m) are constants satisfying

X
i

aijBi + (a+ 2)C=(a+ 1) = 0;
X0

i;k

Aikaijakj = C=(a+ 1)

X0

i;l

Ail(aikaij + aljalk) = 2C=(a+ 1); (j; k = 1; . . . ;m; j < k)(5.3)
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The function G is a solution of the equation

(5.4) G00(t) + L(a+ 1)a�2t�2(k+a+2)=aG(t)�2k�3 = 0:

A particular solution of (5.4) is G(t) =
�
�La2(a + 1)�2

�1=(2k+4)
t1=a (see

[26]), which means that z, given by

Q(z)=R(z) = �La2(a+ 1)�2u(2k+4)(a+1)=av�(2k+4)=a;

is a solution of (2.1).

The case a = �2; a = �k� 2; a = �(k+2)=(k+1) are of the interest, since
(5.4) is in those cases integrable. Function G, in these cases is given by

(5.5)

8>>>>>><
>>>>>>:

Z �
c+G2=4t� Ltk+1G�2k�2=4(k + 1)

�1=2
d(t�1=2G) = log t+ d; a = �2

Z �
c� LG�2k�2=(k + 2)2

�1=2
dG = t+ d; a = �k � 2;

Z �
c� L(G=t)�2k�2=(k + 2)2

�
�1=2

d(G=t) = d� 1=t; a = �(k + 2)=(k + 1);

respectively, (c; d are arbitray constants).

Specially, for c = 0, solutions of (2.1) be expressed in closed form.

We note, that for Bi = 0 (i = 1; . . . ; n); C 6= 0, (5.3) will be satis�ed only
for a = �2.

6. Nonlinear Klein-Gordon's equation. Now, we shall apply the previous
results to the nonlinear Klein-Gordon's equation:

(6.1.) �
2�+M2�+ ���2k�3 = 0 (M;�; k = const:);

where �2 = @2

@t2 �
@2

@x2
1

� @2

@x2
2

� @2

@x2
3

.

This equation has the solution

(6.2) � = uG(1=u2);

where G is determined by (5.5), case a = �2. Specially, for c = 0, we have

� = u
�
�(�=(k + 1)dM2)1=2(du�2k�4 � 1)1=(k+2)

�
:

Function u is a common particular solution of the linear Klein-Gordon's
equation

�
2u+M2u = 0;

and the �rst order equation

u2t � u2x1 � u2x2 � u2x3 =M2u2:
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Particularly, for k = �3 we obtain very important equation (see, for example,
[15-17])

�
2�+M2� + ���3 = 0:

This equation has the sollution (6.2), where G(t) is determined by
Z
(c+G2=4t+ �t�2G4=8M2)�1=2d(t�1=2G) = d+ log t;

(c; d are arbitray constants). Thus, in this case G is expressed through elliptic
functions. For c = 0 we obtain the result from [15-17, 21]

� = u
�
�(��=2M2d)1=2(du2 � 1)�1

�
:

7. Ordinary di�erential equations. In this chapter we shall consider the
case n = 1, i.e. ordinary di�erential equations

(i) As a consequence of the theorem 1 we get the following:

Theorem 2. Equation

(7.1) y00 + f(y0; y; wh(u; v); x) = 0

has the solution y = F (u; v), where u, v are two linearly independent patricular

solutions of the linear equation:

(7.2) u00 +A(x)u0 +B(x)u = 0;

if and only if it has the form

(7.3) y00 + P (y)y
02 +A(x)y0 +B(x)Q(y) + C(x)R(y) = 0:

P;Q;R satisfy (2.2), C is given by

(7.4) C(x) = Kw2h(u; v)2;

where K is a constant, w is the Wronskian for u and v, h is homogenous function

of order k in two variables.

Function F is given (2.4.), where (2.5), (2.6) hold.

(ii) By the transformation z(t) =
�
Q(y)=R(y)

�1=2k+4
=u; t = v=u, equation

(7.3) reduces to the eqution of the form

(7.5) z00(t) + a(t)z(t)�2k�3 = 0:

In the other words, equation (7.5) has the role of \canonical eqution" for
the considered class of problems. Namely, all equations of the form (7.1) having
solution y = F (u; v) can be obtained from (7.5) by the substitution of the form
z = �(x)�(y); t = �(x).
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(iii) Specially, for h(u; v) = 1, we get the Herbst's equation (see, for example
[5, 9, 10, 12]).

(iv) Equation (7.3), where P (y) = (a�1)=y; Q(y)=y=a;R(y)=y�(2k+4)a+1=a
(a = const) and h has the form (3.3) is considered in papers [18-21, 24] in some
special cases.

(v) Let B(x) = 0; P = 0; Q = y; R = y�2k�3, then (7.3) becomes
generalized Emden's equation (see, for example [25-27]). Taking, for example,
h(u; v)2 = (C1u

2 + C2uv + C3v
2)k and using the result from section 3, point (iv),

item 1, we obtain the conditions for the integrability of Emden's equation from
[25-27].
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