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GRAPHS WITH MAXIMUM AND MINIMUM

INDEPENDENCE NUMBERS

Ivan Gutman

Abstract. If r(G; k) is the number of selections of k independent vertices in a graph
G, and if r(G; k) > r(H; k), the graph G is i-greater than the graph H. The maximal and
the minimal graphs w.r.t. the above property are determined in the class of acyclic, unicyclic,
connected acyclic and connected unicyclic graphs.

If G is a graph and v1; v2; . . . ; vn are its vertices, then the vertices vi1 ; . . . ; vik
are said to be mutually independent if they pairwise non-adjancent in G. The
number of ways in which k mutually independent vertices (k � 2) can be selected
in G is called the k-the independence number of G and is denoted by r(G; k). In
addition, r(G; 0) = 1 and r(G; 1) = n =number of vertices of G.

Let G and H be two graphs. G is i-greater than H;G > H , if r(G; k) �
r(H; k) for all values of k. If both G > H and H > G, then G and H are said to

be i-equivalent, G
i
= H .

Let G be a set of graphs. An element Gmax is i-maximal in the set G if
Gmax > G for all G 2 G. Similarly, if Gmin 2 G and G > Gmin for all G 2 G,
then Gmin is called the i-minimal graph in the set G.

In the present paper we determine the i-maximal and the i-minimal graphs
for a number of classes of graphs.

Preliminaries

We shall use the following terminology and symobolism. G = H (resp. G 6=
H) means that the graphs G and H are (resp. are not) isomorphic. G1 u G2 is
the union of the graphs G1 and G2.

If the vertices vr and vs are adjacent in G, then the edge between them is
labelled by ers. If the vertices vr and vs are not adjacent in G; G+ ers is the graph
obtained from G by introducing an edge between vr and vs.
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Let vr be a vertex of G1 and vs a vertex of G2. Then (G1 uG2) + ers will be
denoted by G1(r; s)G2. The graph obtained by identifying the vertices vr and vs is
G1[r; s]G2.

The complete graph, the path, the cycle and the star with n vertices are
denoted by Kn; Pn; Cn and Sn, respectively. The vertices of Pn are labelled so that
vr and vr+1 are adjacent, r = 1; . . . ; n� 1. The vertices of Cn are labelled so that
Cn = Pn + e1n.

The graph obtained by adding kr pendent edges to the vertex vr of G, for all
r = 1; . . . ; n is denoted by G(k1; . . . ; kn).

Fn; Tn; Un and U0

n will denote the set of all forests, trees, unicyclic graphs
and connected unicyclic graphs, respectively, with n vertices.

Some elementary properties of the independence numbers are summarized in
the following lemma [1].

Lemma 1. Let G be a graph and v1; v2; . . . ; vn be its vertices. Let Ar be
the set containing vr and all vertices adjacent to vr. Then the following statements
hold.

(a) r(G; k) = r(G � vr; k) + r(G �Ar; k � 1).

(b) If the vertices vr and vs are not adjacent in G, then

r(G; k) = r(G + ers; k) + r(G �Ar �As; k � 2):

If the vertices vr and vs are adjacent in G, then

r(G; k) = r(G � ers; k)� r(G �Ar �As; k � 2):

(c) r(G1 uG2; k) =
kP

j=0
r(G1; j)r(G2; k � j).

In order to prove the main results of this paper, namely Propositions 2{8, we
need a few auxilary statements.

Lemma 2. If v is a vertex of G then G > (G� v). If e is an edge of G, then
(G� e) > G.

Lemma 3. If G1 > H1, then for all graphs G2; (G1 uG2) > (H1 uG2).

Proof. Immediate from Lemma 1 c. q.e.d.

Lemma 4. If G is a disconnected graph with n vertices and cyclomatic number
c, then there exists a connected graph H with n vertices nod with cyclomatic number
c, such that G is i-greater than H.

Proof. If G = G1 uG2; vr is a vertex of G1 and vs is a vertex of G2, then it
is suÆcient to choose H = G1(r; s)G2. q.e.d.

In [1] the following result has been proved.
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Proposition 1. n K1 is the i-maximal graph and Pn is the i-minimal graph
in Fn. Sn is the i-maximal graph and Pn is the i-minimal graph in Tn.

Lemma 5. Let Tn be a tree with n vertices and v1 its vertex. If G is a graph
and vr its vertex, then Sn(1; r)G > Tn(1; r)G > Pn(1; r)G.

Proof. Applying Lemma 1a to the vertex vr of Sn(1; r)G; Tn(1; r)G and
Pn(1; r)G, respectively, we obtain

r(Sn(1; r)G; k) = r(Sn u (G� vr); k) + r((n � 1)K1 u (G�Ar); k � 1);

r(Tn(1; r)G; k) = r(Tn u (G� vr); k) + r((T � v1)u (G�Ar); k � 1);

r(Pn(1; r)G; k) = r(Pn u (G� vr); k) + r(Pn�1 u (G�Ar); k � 1):

Lemma 5 follows now from Proposition 1 and Lemma 3. q.e.d.

Lemma 6. Using the same notation as in Lemma 5.

Sn[1; r]G > Tn[1; r]G > Pn[1; r]G.

Proof. Let in the graph G the vertex vr be adjacent to the vertices
vri; i = 1; . . . ; dr. Then by applying Lemma 1a to the vertices vri; i = 1; . . . ; dr,
of Sn[1; r]G; Tn[1; r]G and Pn[1; r]G, we obtain

r(Sn[1; r]G; k) = r(Sn u (G�Ar); k) +

drX

i=1

r((n � 1)K1 u (G�Ari); k � 1);

r(Tn[1; r]G; k) = r(Tn u (G�Ar); k) +

drX

i=1

r((Tn � v1)u (G�Ari); k � 1);

r(Pn[1; r]G; k) = r(Pn u (G�Ar); k) +

drX

i=1

r(Pn�1 + (G�Ari); k � 1):

Lemma 6 follows again from Proposition 1 and Lemma 3. q.e.d.

Lemma 7. For j = 1; 2; . . . ; n� 1; (P1uPn�1) > (Pj uPn�j) > (P2uPn�2).

Proof. We use induction on the number n. The validity of Lemma 7 is easily
checked for n � 8.

We suppose now that Lemma 7 holds for n = h�2 and n = h�1, and deduce
its validity for n = h. It is legitimate to assume that h > 8.

By Lemma 1a, r(Pj u Ph�j ; k) = r(Pj u Ph�1�j ; k) + r(Pj u Ph�2�j ; k � 1),
which combined with the hypothesis

r(P1 u Ph�3; k � 1) � r(Pj u Ph�2�j ; k � 1) � r(P2 u Ph�4; k � 1)

and r(P1 u Ph�2; k) � r(Pj u Ph�1�j ; k) � r(P2 u Ph�3; k) yields the required
statement for n = h. q.e.d.

Lemma 8. For 1 < j < n� 1; Pn�1(2; 1)P1 > Pn�1(j; 1)P1 > Pn�1(3; 1)P1.
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Proof. By Lemma 1a, r(Pn�1(j; 1)P1; k) = r(Pn�1; k) + r(Pj�1 + Pn�1�j ;

k � 1). Since the �rst term on the r.h. s. is independent of j, we obtain Lemma 7.
q.e.d.

Lemma 9. For 1 < j < n� 2; Pn�2(2; 1)P2 > Pn�2(j; 1)P2 > Pn�2(3; 1)P2.

Proof . Analogous, and based on the relation

r(Pn�2(j; 1)P2; k) = r(Pn�2(j; 1)P1; k) + r(Pn�2; k � 1)

and on Lemma 8. q.e.d.

Lemma 10. Pn�1(3; 1)P1 > Pn�2(3; 1)P2.

Proof . Lemma 10 can be proved by induction on n, using the fact that

r(Pa(i; j)Pb; k) = r(Pa�1(i; j)Pb; k) + r(Pa�2(i; j)Pb; k � 1). q.e.d.

Let vr and vs the two adjacent vertices of a graph G. The substitution of
the edge ers by a path with a vertices yields the graph G(ers j a); see Fig. 1.

Fig. 1

Lemma 11. G(r; 1)Pa > G(ers j a).

Proof . Let the vertices of the graphs G0; G(ers j a) and G(r; 1)Pa be labelled
as indicated in Fig. 1. Then G(r; 1)Pa + eas = G(rrs = G(ers j a) + rers = G0.
According to Lemma 1b,

r(G(r; 1)Pa; k) = r(G0; k) + r((G �As)u Pa�2; k � 2);

r(G(ers j a); k) = r(G0; k) + r((G �Ar �As)u Pa�2; k � 2):

G�Ar�As is an induced subgraph of G�As. Therefore by Lemma 2, r(G�As; k) �
r(G � Ar � As; k), where as by Lemma 3, r((G � As) u Pa�2; k) � r((G � Ar �
As) u Pa�2; k) for all values of k. Lemma 11 now follows from the two equalities
above q.e.d.

Lemma 12. (a) For 3 � j � n; Cj(1; 1)Pn�1
i
= Cn�j+3(1; 1)Pj�3.

(b) For 3 < j < n, .

C4(1; 1)Pn�4
i
= Cn�1(1; 1)P1>Cj(1; 1)Pn�j>C5(1; 1)Pn�5

i
= Cn�2(1; 1)P2.

Proof . By Lemma 1a,
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r(Cj (1; 1)Pn�j ; k) = r(Pn�1; k) + r(Pj�3 u Pn�j ; k � 1),

from which it follows that Cj(1; 1)Pn�j and Cn�j+3(1; 1)Pj�3 are i-equivalent.

In addition, because of Lemma 7, the r.h.s. of the above equality will be
maximal if j�3 = 1 or n� j = 1; the same expression will be minimal for j�3 = 2
or n� j = 2. q.e.d.

The main results

Proposition 2. (n� 2)K uK2 is the i-maximal graph and Pn�2(3; 1)P2 is
the i-minimal graph in the set FnnfnK1; Png.

Proof . The �rst part of Proposition 2 is evident.

Let F be the i-minimal graph in FnnfnK1; Png. Then F must be connected
(because of Lemma 4), it must have exactly one vertex of degree greater than two
(because of Lemma 5) and this vertex must be of degree three (because of Lemma
6). Let v be a vertex of F having degree one and let v be adjacent to w. Then
F � v 2 Tn�1; F � v � w 2 Fn�2 and

r(F; k) = r(F � v; k) + r(F � v � w; k � 1):

Now because of Proposition 1, F can be i-minimal only if (a) F � v = Pn�1 and
/or (b) F � v � w = Pn�2.

In case (a) we have F = Pn�1(j; 1)P1. If j = 1 or j = n, then F = Pn, which
is impossible. If 1 < j < n, then F is not i-minimal because of Lemmas 8 and 10.
Hence case (a) leads to contradictions.

In case (b), F = Pn�2(j; 1)P2. It must be that 1 < j < n; otherwise F = Pn.
But then, because of Lemma 9, F = Pn�2(3; 1)P2. q.e.d.

Proposition 3. P2(n� 3; 1) is the i-maximal graph and Pn�2(3; 1)P2 is the
i-minimal graph in the set TnnfSn; Png.

Proof . Having in mind Proposition 2, one has to prove only that P2(n� 3; 1)
is the i-maximal graph.

Let T be any element of TnnfSn; Png, and let vr be its vertex of degree one.
Then r(T; k) = r(T � vr; k) + r(T � Ar; k � 1)

with T � vr 2 Tn�1 and T � Ar 2 Fn�2. In order to have a maximal value for
r(T; k) we have to choose T � vr = Sn�1 (because of Proposition 1) and T �Ar =
(n � 4)K1 u K2 (because of Proposition 2). This, on the other hand, implies
T = P2(n� 3; 1) q.e.d.

Using similar considerations one proves

Proposition 4. (n � 3)K1 u S3 is the i-maximal graph in the set
FnnfnK1; (n�2)K1uK2g: P2(n�4; 2) is the i-maximal graph in the set TnnfSn; P2
(n� 3; 1)g:
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Proposition 5. (n � 3)K1 u C3 is the i-maximal graph in the set Un. Cn

and C3(1; 1)Pn�3 are two (mutually i-equivalent) i-minimal graphs in the set Un.

Proof . Every graph U 2 Un contains a vertex vr whose degree is greater
than one, such that U � vr is a forest with n � 1 vertices and with at least one
edge, where as U �Ar is a forest with at most n� 3 vertices. Now, by Proposition
2, ((n� 3)K1 uK2) > (U � vr) and by Proposition 1 and Lemma 2, (n� 3)K1 >

(U � Ar). It is easy to see that U = (n� 3)K1 u C3 is the unique graph with the
properties U � vr = (n� 3)K1uK2 and U �Ar = (n� 3)K1. This proves the �rst
part of Proposition 5.

The fact that Cn is i-minimal in Un is an immediate consequence of Lemma
11. Then the second part of Proposition 5 follows from Lemma 12. q.e.d.

A similar reasoning leads also to

Proposition 6a. (n � 4)K1 u C4 and (n � 4)K1 u C3(1; 0; 0) are the two
(mutually i-equivalent) i-maximal graphs in the set Unnf(n� 3)K1 u C3g.

Proposition 7. C3(n � 3; 0; 0) is the i-maximal graph, whereas Cn and
C3(1; 1)Pn�3 are the two (mutually i-equivalent) i-minimal graphs in the set U0

n.

Proof . Having in mind Proposition 5, only the �rst part of Proposition 7
remains to be proved. Let U be the i-maximal element of U0

n and let q be the size
of its cycle. By Lemma 6, U must be of the form Cq(k1; k2; . . . ; kq), where ki � 0.

Let vr be a vertex of degree one of the graph U . Then U � vr 2 U
0

n�1 and
U �Ar 2 Fn�2nf(n� 2)K1g.

We complete the proof by induction on the number of vertices of U . For
n = 4; 5 and 6 it can be established easily that U = C3(n � 3; 0; 0). Suppose now
that C3(h� 4; 0; 0) is i-maximal in U0

h�1. Then

r(C3(h� 3; 0; 0); k) = r(C3(h� 4; 0; 0); k) + r((h� 4)K1 uK2; k � 1):

Since by Proposition 2, (h � 4)K1 u K2 is i-maximal in Fh�2nf(h � 2)K1g, we
conclude that C3(h� 3; 0; 0) is i-maximal in U0

h. q.e. d.

Analogous considerations also lead to

Proposition 8a. C3(n � 4; 1; 0) is the i-maximal graph in the set U0

nnfC3

(n� 3; 0; 0)g.

In order to complement the results exposed in Proposition 6a and 8a, we
determine also the second i-minimal unicyclic graphs.

Propositions 6b and 8b. The two i-equivalent graphs C5(1; 1)Pn�5 and
Cn�2(1; 1)P2 are i-minimal in the set UnnfCn; C3(1; 1)Pn�3g (and therefore also
in the set U0

nnfCn; C3(1; 1)Pn�3g).

Proof . The i-minimal graph in UnnfCn; C3(1; 1)Pn�3g must be connected
(because of Lemma 4) and must possess exactly one vertex of degree one (because
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of Lemmas 5 and 11). Hence this graph must be of the form Cj(1; 1)Pn�j . The
rest of the proof follows from Lemma 12. q.e. d.
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