A NOTE ON EXTENSIONS OF BEAR AND P. P.-RINGS

N. J. Groenewald

Bear rings are rings in which the left (right) annihilator of each subset is generated by an idempotent [2]. Closely related to Bear rings are left P. P. -rings; these are the rings in which each principal left ideal is projective, or equivalently, ring in which the left annihilator of each element is generated by an idempotent. In [1] Armendariz showed that if \(R \) is a ring which has no nonzero nilpotent elements then \(R[X] \) is a Bear or P.P.-ring if and only if \(R \) is a Bear or P.P.-ring. In this note we generalize this result. A semigroup \(G \) is called an u.p. semigroup if, when \(A \) and \(B \) are nonempty finite subsets of \(G \), then there always exists at least one \(x \in G \) which has an unique representation in the form \(x = ab \) with \(a \in A \) and \(b \in B \). We prove that if \(R \) is a reduced ring and \(Ga \) u. p. semigroup then the semigroup ring \(RG \) is a Bear or P.P.-ring if and only if \(R \) is a Bear or P.P.-ring.

We will assume throughout that rings have a unit. In a reduced ring left and right annihilators coincide for any subset \(U \) of \(R \), hence we let \(\text{ann}_R(U) = l(U) = \{ a \in R : aU = 0 \} \).

The key lemma is the following characterization of zero divisors in \(RG \) when \(R \) is a reduced ring.

Lemma 1. [3, Corollary 3.2] Let \(G \) be an u. p. semigroup and let \(R \) be a reduced ring. Let \(G \) be an u.p. semigroup and let \(p, q \in RG \) such that \(pq = 0 \). Then for any \(g, h \in G \) we have \(p_gq_h = 0 \).

Corollary 1. If \(R \) is a reduced ring and \(f \in RG \), \(G \) an u.p. semigroup, such that \(f^2 = f \) then \(f \in R \).

Proof. Let \(f = \sum_{i=1}^{n} a_i g_i \). It is easy to show that \(g_i = e \) for at least one \(i \).

Hence we may, without any loss in generality, put \(f = a_1 e + a_2 g_2 + \ldots + a_n g_n \). Now \(f(f - 1) = 0 \). From Lemma 1 we have \(a_1(a_1 - 1) = 0 \) and \(a_i = 0 \) for \(i \geq 2 \). Hence \(f = a_1 = a_1^2 \in R \).

If \(f \in RG \) and \(f = \sum_{i=1}^{n} a_i g_i \) let \(S_f = \{ a_1, a_2, \ldots, a_n \} \).
Corollary 2. Let R be a reduced ring and $U \subseteq RG$. If $T = \bigcup_{f \in U} S_f$ then
\[\text{ann}_{RG} U = \text{ann}_R(T)G. \]

Proof. This follows easily from Lemma 1.

Theorem 1. Let R be a reduced ring and G an u.p. semigroup. Then RG is a P.P.-ring if and only if R is a P.P.-ring.

Proof. If RG is a P.P.-ring and $a \in R$ then $\text{ann}_R(a) = R \cap \text{ann}_{RG}(a) = R \cap (RG)e$ with $e^2 = e$. By Corollary 1, $e \in R$ and thus $R \cap RG = Re$.

Now assume R is a P.P.-ring. Let $a, b \in R$ with $\text{ann}_R(a) = Re_1$, $\text{ann}_R(b) = Re_2$, where $e_1^2 = e_1, e_2^2 = e_2$. Put $e = e_1e_2$. Because the idempotents of R are central we have $e^2 = e$. We show that $\text{ann}_R \{a, b\} = Re$. If $xa = xb = 0$ then $x = xe_1 = xe_2$ and $xe = xe_1e_2 = x$. Hence $\text{ann}_R \{a, b\} \subseteq Re$. Further, let $t \in Re$, say $t = re_1e_2$. Now $ta = re_1e_2a = re_2e_1a = 0$ and $tb = re_1e_2b = 0$. Hence $Re \subseteq \text{ann}_R \{a, b\}$. Therefore, $Re = \text{ann}_R \{a, b\}$. Thus for any finite subset $U \subseteq R$, $\text{ann}_R(U) = Re$ for some idempotent $e \in R$. If $f \in RG$ then by Corollary 2, $\text{ann}_{RG}(f) = \text{ann}_R(S_f)G = (Re)G = (RG)e$ with $e^2 = e$, as Sf is finite. Thus RG is a P.P.-ring.

Similarly we can establish

Theorem 2. Let R be a reduced ring and G an u.p. semigroup. Then RG is a Bear ring if and only if R is a Bear ring.

Corollary 3 [1, Theorem A] Let R be a reduced ring. Then $R[x]$ is a P.P.-ring if and only if R is a P.P.-ring.

Proof. It follows from the fact that the infinite cyclic semigroup $\langle X \rangle$ is an u.p. semigroup.

Corollary 4 [1, Theorem B]. Let R be a reduced ring. Then $R[x]$ is a Bear ring if and only if R is a Bear ring.

References

University of Port Elizabeth
South Africa
(Received 08 07 1982)