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DISCUSSING GRAPH THEORY WITH A COMPUTER III,

MAN{MACHINE THEOREM PROVING

Drago�s Cvetkovi�c, Irena Pevac

Abstract. The interactive programming system \Graph" for the classi�cation and exten-
sion of knowledge in the �eld of graph theory has recently been implemented at the University of
Belgrade, Faculty of Electrical Engineereing. System \Graph" consists of a computerized graph
theory bibliography, a system for graph theoretic alorithms and a mechanical theorem prover.
This paper describes the theorem prover of the system \Graph". The main features of the prover
are: formalization of graph theory by a �rst order calculus, well organized �les of de�nitions
and lemmas, both interactive (natural deduction) and non-interactive (resolution) work, usage of
analogies, man-machine communication by natural language (including sentences to be proved),
possibility to use graph theoretic alogithms to prove statements about concrete graphs or to check
conjectures on particular graphs including random graphs.

1. Introduction. The interactive programming system \Graph"for the
classi�cation and extension of knowledge in the �eld of graph theory, announced in
[4], has recently been implemented at University of Belgrade, Faculty of Electrical
Engineering. Parts of the system are described in papers [5, 6, 7, 8, 9, 11, 12].

System \Graph" consists of a computerized bibliography of graph theory
(BIBLI), a subsystem (ALGOR) with the graph theoretic algorithms implemented,
and a theorem prover (THEOR). The purpose of the system is to help a quali�ed
researcher in the �eld of graph theory or its applications.

The system is implemented on a PDP 11/34 computer with two disc drives
(RK 05), a typewriter and a graphical video display with a light pen. Because
of the small memory space (32K) the use of overlay was necessary. Programming
language is FORTRAN IV and the whole package contains about 25000 instructions
and about 700 subroutines.

The whole system is supported by such useful modules as memory manager
(MEMAN), which controles the main memory and gives the space to subroutines
are active in the moment, �le manager (FILMAN) whose speci�c feature is that it
is possible to store an arbitrary long record in a �le, moduo for displaying messages
etc.

AMS Subject Classi�cation (1980): Primary 68G15; 03B 35, Secondary 05C 99.
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The communication with the system is carried out in English. The syntax of
commands is simple, and the system can help the user if he does not know their
exact form.

In this paper we shall describe the interactive theorem prover contained in the
part THEOR. The system contains also a noninteractive theorem prover, based on
resolution, with some newly developed induction rules added, which are described
in [11].

The strategy in building this system was to make it highly interactive. With
respect to this we followed some ideas from [10]. This enables the user to tell
the system everything he knows about the statement which is being proved. As
a contrast to the similar systems described in the literature, we did not want to
force the system to prove what the user already knows. Of course, we incorporated
techniques standard for interactive provers. Our hopes for e�ectiveness of the prover
are based on features speci�c for graph theory: carefully chosen formalization of
graph theory, well organized �les of de�nitions and lemmas, usage of graph theoretic
algorithms. There are, as well, some non-speci�c features such as: communication
in a natural language (the sentence which is proved is given by the user in English),
and usage of analogies.

Interactive theorem prover is based on splitting procedures described in [1,
2, 3].

Experiments with the prover are in due course. Improvements can include
some blocks which would automatically do some parts instead of the user.

2. Formalization of graph theory. The graph theory is formalized by a
special �rst order predicate calculus, called \arithmetical graph theory, or briey
AGT. AGT is obtained by extending the formal arithmetics.

There are point, line, and integer variables. They are represented by strings
of at most �ve symbols, �rst one being always a letter, while the others are digits.
(Hence, digits are suÆxes of letters and are used instead of indices). The letter
indicates the type of the variable according to the following scheme:

X; Y Z|point variables;

U; V W|line variables;

K; L; M; N|integer variables.

Similarly, the strings of the type described above, where the �rst letter is:

G; H denote graph names;

O denote constants;

F denote function names;

A denote operations over graphs.

Finally, the strings where the letter is one of P;Q;R; S; T denote predicate
names. The corresponding predicates are n-placed where n = 0; 1; 2; 3; 4, respec-
tively. This convention does not concern predicates carried from arithmetics. Pred-
icates of type X�Y where the sign � stands for =; 6=; <;�; >;�, are written in
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standard fashion in formulas, instead of, say, R(X;Y ) as the other 2-placed predi-
cates.

All the constants, relations, operations and axioms with the same meaning are
carried from the formal arithmetics. AGT has also a basic predicate S1(X;Y; U)
with the meaning \points X and Y are joined by the line U" and has constants O1
and O2 which denote the number of points and the number of lines, respectively.
It is assumed that 1 � X;Y � O1 and 1 � U � O2.

There are no variables for graphs, as we are dealing with the �rst order theory.
If we want to mention the graph considered, we can add the name of the graph as a
suÆx of a predicate name. So we get the predicate S1G(X;Y; U) with the meaning
\points X and Y are joined by the line U in the graph G". The same could be
done for constants or functions. So, O1G and O2G denote the number of points in
the graph G , and the number of lines in the graph G, respectively.

More generally, the following suÆxes could be added to the predicate names:

1. B, 2. B $E, 3. B$$EC, where B and C are the names of graphs and
E is a string denoting a graph operation (unary or binary).

The suÆxes are added to point out that the predicate is referred to: 1. the
graph with the name B; 2. the graph that is obtained by applying the unary
operation E to the graph with the name B; 3. the graph that is obtained by a
binary operation E from graphs with the names B and C.

The previously mentioned suÆxes could also be added to the constant or
function names with the analogous meaning.

All these variables and symbols are given as the user sees them in the formula,
but they are internally coded by some integers. These codes are not mentioned here.

The axioms of formal arithmetic are extended by the axioms for S1(X; Y; U):

1Æ (9X)(9Y )S1(X; Y; U),

2Æ S1(X; Y; U) ^ S1(X1; Y 1; U) ) (X = X1 ^ Y = Y 1) _ (X = Y 1 ^ Y =
X1),

3Æ eS1(X; Y; U),

4Æ S1(X; Y; U) ^ S1(X; Y; V )) U = V ,

5Æ S1(X; Y; U)) S1(Y; X; U).

There are two axiom schemes. If a point variable X is an argument of
a predicate whose name has a suÆx D, (where D is one of previously de�ned
suÆxes), then 1 � X � O1D. Similarly, for a line variable we have 0 � U � O2D.
The user is permitted to introduce a new speci�c predicate, besides S1(X; Y; U).
This, of course, implies further extensions of the axiom set. That will be discussed
latter with more details.

Naturally, the formalization of graph theory by AGT is not the only one
possible. The great advantage of AGT is that we can formalize almost all the
notions from the \proper graph theory" (i. e. excluding weighted graphs, spectra,
etc) within a �rst order calculus.
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3. The knowledge organization. While the system is working, it commu-
nicates with the �les of: de�nitions, axioms, lemmas, and logically valid formulas,
where the knowledge that the system possesses is situated.

We introduce a new de�nition by telling the system the semantic category
that determines the concept that will be de�ned, and by typing the de�nition in
the language \proper GTCL" (Graph Theoretical Computer Language). \Proper
GTCL" is a part of the natural English language simpli�ed and formalized for the
use in graph theory. The syntax of the \proper GTCL" and the corresponding
parser are described in [12].

The de�nition is, of course, a sentence where \i�" is the central logical conec-
tive. A de�niendum is the new concept (predicate) and a de�niens consists of
concepts (predicates) that were de�ned before.

Finally, the de�nition is translated into a formula of AGT. The translation
procedure is described in [5] and [7].

For instance, if we tell the system a new concept: adjacent points , with the
de�nition in \proper GTCL": Points X and Y are adjacent i� there exists a
line U , such that points X and Y are joined by the line U", the corresponding
translation to the �rst order calculus formula is the following:

R1(X; Y ), (9U)S1(X; Y; U):

The name of the new predicate is generated by the system and arguments of
this predicate are free variables in the de�niens.

Let us mention some other examples of de�nitions.

Incident point and line: \Point X and line U are incident i� there exists a
point Y such that points X and Y are joined by the line U ;

R2(X; U), (9Y )S1(X; Y; U):

Points joined by a walk : \Points X and Y are joined by a walk i� there exists a
number K such that points X and Y are joined by a walk of length K";

R4(X; Y ), (9K)S2(X; Y; K):

(For the de�nition of the predicate S2(X; Y; K) see below.)

Connected graph: Graph is connected if for all X; Y points X and Y are
joined by a walk";

P12, (8X)(8Y )R4(X;Y ):

Isolated point : \Point X is isolated i� for all points Y points X and Y are not
adjacent";

Q3(X), (8Y )eR1(X;Y ):

Vertices adjacent in the complement of a graph: \Points X and Y are adjacent in
the complement of a graph G i� points X and Y are not adjacent in the graph
G and point X is not equal to point Y ";

R1G$A1(X; Y ),eR1G(X; Y ) ^X 6= Y:
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This is an example where the de�ned adjacency relation refers to the graph
that is obtained by a unary graph operation. Once the adjacency relation for a
graph obtained by a unary or binary operation is introduced, other notions, which
were previously de�ned or will be de�ned afterwards, for graphs in general, are
automatically extended. So, it is not necessary to de�ne them again for the new
graph. If the predicate name appears with suÆxes B$E or B$$EC, where B and
C are the names of graphs and E denotes a unary or binary graph operation, the
system is able to generate the corresponding de�nition using analogy principle.

For instance, if the predicate Q3H7$A1(Z) appears (its meaning is \Z is
an isolated point in the complement of the graph H7"), the system will �nd the
de�nition of an isolated point in the graph G whose formula is

Q3G(X), (8Y )eR1G(X; Y ):

Without changing the de�nition �le it will generate the corresponding de�ni-
tion by analogy:

Q3H7$A1(X), (8Y )eR1H7$A1(X;Y ):

This is done by interchanging the predicate suÆxes from the above de�nition.

Evidently, the same analogy principle is used when the suÆx with the name
of a graph does not �t to the graph name used in the de�nition. Let us note, that
the name of the graph has the role of a hidden free variable.

The de�nition �le is created in a deductive way. There are basic and derived
predicates, the latter being de�ned by previously de�ned predicates.

Among basic predicates we have X = Y and S1(X;Y; U), but the user can
introduce other basic predicates. For instance, the predicate S2(X;Y;K) mentioned
in the de�niens of the concept points joined by a walk is introduced as a basic
predicate, but its actual meaning is speci�ed by the following axioms:

S2(X;Y; 0), X = Y; S2(X;Y; 1), R1(X;Y );

S2(X;Y;K + 1), (9Z)(S2(X;Z;K) ^ (9V )S1(Z; Y; V )):

Every de�nition is provided with two sets of pointers. The �rst set consists of
the numbers of de�nitions where the predicates from the de�nens are de�ned and
the second one contains the numbers of de�nitions in which the de�niendum of this
de�nition is used in the formula of the de�niens. The two sets of pointers provide
a faster access to the speci�es de�nition and help direct the process of substituting
of de�nitions.

As we can see, the system is able to \learn" the graph theory. Although the
elementary notions of graph theory are introduced into the system, the user can
teach it various variants of graph theory as he feels is useful. Di�erent users can
develop the de�nition �le towards di�erent areas of graph theory following their
own interests.

Using the so developed deinition �le the system is able to accept any sentence
written in \proper GTCL" which contains the concepts already de�ned.
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Sentences are memorized in the system GRAPH under the names which begin
with one of symbols P;Q;R; S and which are given by the user. Sentences are
introduced into the system by the command

SET \name"=\text";

where \name" means the name of the sentence and text of the sentence is in \proper
GTCL".

If the sentence is syntactically correct and contains the concepts known to
the system, it will be translated into a formula of AGT . Under the name given the
system will memorize the English text of the sentence (appropriately coded), the
formula of AGT and a set of pointers to the de�nitions of predicates occurring in
the formula.

A sentence de�ned in the system can be sent to several �les, including the
�les of axioms and lemmas.

The axiom �le contains the sentences that involve basic predicates of AGT .
Limitations coming from axiom schemes for point and line variables (see previous
section) are generated by the system when necessary.

The �le of lemmas contains the sentences that accelerate the proving process.
There is a �xed part of this �le containing some useful graph theoretical lemmas
(for example, symmetry and transitivity of the predicate R4(X;Y ) and so on) and
this part is protected against user's modi�cations. On the other hand, the user can
add (or delete) some other lemmas if he feels that it would accelerate the proving
process.

The user is also permitted to get the de�nition of some concept if he wishes.
A de�nition can be cancelled but that causes the loss of all de�nitions which use
the de�nition cancelled.

The �le of logically valid formulas di�ers from the above mentioned �les, in
which the formulas express some relationship over concrete predicates of AGT .
Here, the relationship concerns any predicates or even formulas.

4. Description of the interactive prover. After the sentence is intro-
duced into the system under a name P , we begin the interactive proof by the
command:

CREATE [TREE] T PROOF OF [SENTENCE] P:

The words in brackets may be omitted.

The system creates the tree that is the proof of the sentence P . The sentence
that is the goal of the proof is split into the subgoals and they further are split
into the new subgoals etc. So, we generate the proof tree which is memorized
in the system. The proof tree is a rooted tree. The root indicates the currently
considered subgoal. The user can move the root by commands as described below.
The user is also permitted o tell the system that the considered subgoal is true, and
the comment why it is so, is memorized. There is also a resolution based prover
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incorporated into the system that is described in [11] and it can be applied to any
subgoal. Of course, the proofs is �nished when all the subgolas are proved.

There are the following blocks available to the user for further processing of
the current subgoal:

1Æ Finding subgoals,

2Æ Case analysis (by P ),

3Æ Forward chaining (by the transition goal P ),

4Æ Simpli�cation of the formula,

5Æ Extension of the formula,

6Æ Modi�cation of the formula to an equivalent form,

7Æ Sending the subgoal to the resolution based prover,

8Æ The user tells the system that the current subgoal is true,

9Æ Moving of the root of the tree up, down, to the left, to the right, to the

speci�c point,

10Æ Displaying the proved and the unproved subgoals,

11Æ Omitting a subtree of the generated tree,

12Æ Presenting a current subgoal in the formula form or in English where

the sentence is written in \proper GTCL" mentioned earlier,

13Æ Printing the whole proof tree with all subgoals as sentences in a nice

form,

14Æ Displaying the graphical version of the proof tree.

Some of the blocks will be now explained with more details.

1Æ Finding subgoals . Essentially, this block splits a formula of the form A^B
into two subgoals: A and B . This includes the following cases:

A, B A) B ^ C A _ B ) C

� � � � � �

A) B B ) A A) B A) C A) C B ) C

and some others, similarly, as described in [2].

2Æ Case analysis , the current subgoal denoted A is converted into two sub-
goals:

A

� �

P ) A eP ) A

where P is a newly introduced sentence given by the user. The further improve-
ment of the system includes inserting the heuristics for automatic generating of the
sentence P .
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3Æ Forward chaining by the transition goal P . The current subgoal of the
form A( B is converted into two subgoals:

A) B

� �

A) P P ) B

where the sentence P is given by the user. As in previous case the automatic
generation of P is planned.

4Æ Simpli�cation of the subgoal . The current subgoal of the form A ) B is
simpli�ed by omitting the hypothesis A and dealing further with conclusion B.
Formula A is moved to the temporary �le and it can be added as a conjunct to a
hypothesis of some subgoal which is situated below the subgoal A) B.

5Æ Extending the subgoal . The sentence P from the temporary �le is added
to the hypothesis of the current subgoal of the form A ) B. The situation when
this is permitted is just opposite to 4Æ.

6Æ Modi�cation of the subgoal using the equivalent transformations.

1ÆÆ The current subgoal can be transformed to an equivalent form, using the
de�nition �le. This can be done by substituting for a predicate by its de�niens. This
includes the cases when analogy is used, as discussed in Section 3. The opposite case
we substitute the de�niendum of some de�nition for a subformula of the current
subgoal, provided this subformula \equals" the de�niens of the de�nition. The two
formulas \equal" if they coincide, neglecting the arguments of the predicates, the
predicate suÆxes and superuous brackets.

2ÆÆ The current subgoal can be transformed using an axiom of the form
F1 , F2. If one side of the axiom \equals" a subformula of the formula, in the
sense described above, it can be substituted by the other side. Of course, the
analogy is also included.

3ÆÆ The current subgoal can be transformed using a lemma in the same way
as described in 2ÆÆ

4ÆÆ The modi�cation of the current subgoal by means ob a logically valid
formula (LVF) is performed if LVF is in the form of an equivalence. Each subformula
of the subgoal is compared with both sides of such a LVF. If they are of the same
structure, the subformula is replaced by another formula corresponding to the other
side of the LVF. For example, De Morgan's law e(P^P2),eP1_eP2 would convert
the formula

(8X)(S2(X;Y;K) ^ :(Q1(X) ^Q1(Y )))

into the formula

(8X)(S2(X;Y;K)^ (:Q1(X) _ :Q1(Y ))):
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The coincidence of the structures of a subformula and a side of a LVF is
reduced to establishing an isomorphism of the trees representing their structures
in a usual way.

The skolemization, in familiar sense, is not implemented, although the e�ects
of skolemization can be achieved by the existing commands. We believe that it
contributes to the greater naturallity of the proof procedure.

Example. Experience with the \Graph" theorem prover will be described in
another paper. Here we give only an example. The sentence:

\If graph G is not connected, then complement of graph G is connected\
which represents a well-known theorem from graph theory, is sent to the prover.

After some dialogue with the system the proof is completed. The printout is
given in Appendix.

5. Some special features. The possibility of checking some subgoal using
the model is a speci�c part of this prover. As mentioned in the introduced the sys-
tem GRAPH also contains the part ALGOR with some graph theoretic algorithms
implemented. So, it gives the option of interacting the part THEOR with the part
ALGOR. Some subgoal can be veri�ed on a random of a particular graph, �rst one
being generated by the system and the other by the user. If the counterexample is
found we conclude that the main goal is not true, or that some subgoals performed
by the user's interaction (case analysis, transition goal) are not true.

In the counterexample is not found the user must continue the proof of the
main goal.

If the proofs of the theorems of graph theory a subgoal is very often a state-
ment about a concrete graph. If that is the case, the subgoal is proved by activating
the corresponding algorithm in the part ALGOR.

Appendix. This appendix represents an abreviated dialog with the system
\Graph" which has led to the proof of sentence named below by S.
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Points of the tree are represented by the corresponding subgoals, i.e. by some
formulas. First formula represents the original sentence S. \Sons" are printed two
characters to the right and below their \father". The system can also print a proof
tree in such a way that formulas are replaced by the corresponding sentences in
English.
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