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SPECTRAL CHARACTERIZATIONS OF LINE GRAPHS.

VARIATIONS ON THE THEME

Drago�s M. Cvetkovi�c

Abstract. The following three topics related to spectral characterizations of line graphs
are discussed: local structure of regular graphs with the least eigenvalue{2 which contain K1;3 as
an induced subgraph, switching regular line graphs into regular graphs which are not line graphs,
and line switching (of graphs) as a modi�cation of familiar (vertex) switching.

0. Introduction

There is an extensive literature about spectral characterization of line graphs
(see, for example, [6], Section 6.3). Eigenvalues of line graphs are bounded from
below by �2. Conversely, connected graphs G with the least eigenvalue �(G) = �2
are generalized line graphs with a �nite number of exceptions. There are exactly
187 connected regular graphs with the least eigenvalue �2 which are not generalized
line graph (i.e. neither line graphs nor cocktail party graphs [2]). These graphs are
called exceptional graphs. Exactly 68 exceptional graphs are cospectral with some
line graphs. All of them can be obtained by switching line graphs with which they
are cospectral.

In this paper we shall discuss some details related to these topics. In Section
1. we shall study the local structure of exceptional graphs havingK1;3 as an induced
subgraph. Section 2 contains a new, quite simple, way to �nd regular line graphs
which can be switched into exceptional graphs. Switching line graphs is interpreted
in Section 3. as a line switching of the root graphs and some interesting e�ects are
described.

1. Exceptional graphs containing K1;3

Suppose K1;3 is an induced subgraph of a regular graph G with �(G) � �2
(see Fig. 1).

Graphs on Fig. 2 all have least eigenvalue less than �2 and therefore they are
forbidden induced subgraphs for G.
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We should add new edges to the graph on Fig. 1 in order to avoid all these
forbidden subgraphs.

Vertices 3 and 5 cannot be adjacent since otherwise a forbidden subgraph G1

induced by vertices 1,2,3,4,5, would appear. Hence, new edges can occur only on
level 2. Let H and H 0 be subgraphs of G induced by vertices 1; 2; . . . ; 10 and
5; 6; . . . ; 10, respectively.

Interactive programming system \Graph" (see [7]) has been used to study the
structure of additional edges on level 2. The graphs considered has been modi�ed
by a light pen end the eigenvalues repeatedly computed.

H 0 with less than 6 edges such that �(H) � �2 has not been found. This led
to the idea that H 0 should have a relatively large number of edges and in particular
that H 0 is regular of degree 2. In that case H would be a cubic graph which would
be a nice result. Although cubic structures are constructed below, examples of H 0

for several exceptional graphs G , easily analysed in the form they are constructed
in [3], show that H 0 need not be regular.

All these facts are quite interesting when related to exceptional graphs which
are cospectral to line graphs. As shown in [3] all the 68 graphs with only one
exception contain K1;3 as an induced subgraph. However, other exceptional graphs
need not contain K1;3 as we shall see below.

We are now in a position to construct cubic exceptional graphs, found in [2]
using a computer produced table of cubic graphs.

A cubic exceptional graph must contain, as an induced subgraph, one of nine
Beineke's forbidden subgraphs [1]. Since the degree is low only a small number of
them can really occur. They are displayed on Fig. 3.

Fig. 3

Let us �rst �nd cubic exceptional graphs containing B1 = K1;3.
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If edges 5; 6; 7; 8; 9; 10 exist in Fig. 1 then we forceably get C1 from Fig. 4.

If the edge 5; 6 does not exist each of vertices 7; 8; 9; 10 has to be adjacent to
5 or 6 (to avoid G2). We get C2; C3; C

0

3; C4 (see Fig. 4). Graphs C3 and C 0

3 are
isomorphic and C4 is the Petersen graph. In neither of these cases we can add new
vertices since otherwise one of forbidden subgraphs from Fig. 2 would occur.

Let us now turn to the cubic graphs which do not contain K1;3. If a cubic
graph contains B2 it contains also B1 and we have previous case. Suppose G
contains B3 or B4 and not B1. Then G must contain one graphs from Fig. 5 as
an induced subgraph or G is the graph C5 from Fig. 4. However graphs from Fig.
5 have the least eigenvalue less than {2. Hence, the only new graph is C5.

Fig. 5

2. Exceptional graphs switching equivalent to regular line graphs

The following theorem is contained in [4]: If a regular graph of degree r with

n vertices can be swiched into a regular graph of degree r�, then r � �n=2 is an

eigenvalue of G.
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Example 2 of the same paper is an application of this theorem to L(K8). It
is proved that if s > 8; L(K8) cannot be switched into another regular graph of
the same degree. Hence, exceptional graphs switching equivalent to L(K8) do not
exist if s > 8.

This example can be generalized to all regular line graphs.

Let L(G) be regular with G connected.

(1) Suppose �rst G is regular degree r with n vertices. L(G) is of degree
2r� 2 and has nr=2 vertices. If L(G) can be swiched into another regular graph of
the same degree then 2r � 2� nr=4 is an eigenvalue of L(G). Obvioulsy, 2r � 2�
nr=4 � �2, which implies n � 8.

(2) Let G be semiregular bipartite with parameters n1; d1; n2; d2(n1d1 =
n2d2): L(G) has n1d1 vertices and degree d1 + d2 � 2. Therefore, we have

d1 + d2 � 2� n1d1=2 � �2; n1d1 � 2(d1 + d2);

n1 � 2(1 + d2=d1) = 2(1 + n1=n2); 1=n1 + 1=n2 � 1=2:

Let n1 � n2. If n1 = 1, then L(G) = Kn2
and there is no exceptional graph.

Similarly if n1 = 2, then L(G) = L(K2;n2) and again no exceptional graphs
exist.

Further, n1 = 3 implies n2 = 4; 5; 6 and if n1 = 4 then n2 = 4. Hence,
n1 + n2 � 9.

So, the area of exceptional graphs cospectral with regular line graphs is well
determined by quite elementary means starting only from the hypothesis that they
all can be produced by switching the corresponding regular line graphs.

3. Line switching

It is know that exceptional graphs are obtained by switching line graphs.
However, switching line graphs can lead again to line graphs (sometimes even iso-
morphic to the orginal ones). Suppose L(G1) is switched with respect to a set V
of its vertices and we get L(G2). The set V can be considered as a set of edges
(lines) of G1. Now, a line switching of G1 w. r. t. V is naturally de�ned, which
converts in to G2. Line swiching of graph w. r. t. a set of lines V means changing
positions of lines of the graph in such a way that the mutual adjacencies of lines in
V and outside V remain and each line from V is adjacent to exactly those lines
outsideV to which it was not adjacent before switching.

Two examples of such a line switshing are given on Fig. 6. Second example
shows that it is sometimes useful to consider root graphs with a number of isolated
vertices.
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Fig. 6

An interesting e�ect occurs in line switching due to the fact that nonisomor-
phic graphs can have isomorphic line graphs. As it is known, the only such case
with connected graphs occurs when one is K3 and the other K1;3. Such a line
switching is represented in Fig. 7.

Fig. 7

Another example with two stars converted into triangles is given in Fig. 8.
This example is interesting also because a regular graph is switched into a regular
graphs with a di�erent derege.

Fig. 8
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