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A DECISION PROCEDURE FOR CERTAIN DISJUNCTION-FREE
INTERMEDIATE PROPOSITIONAL CALCULI

Branislav R. Bori�ci�c

0. Introduction. The decision problem for the Heyting propositional cal-
culus H has been considered and solved by several authors in di�erent ways. A
number of these decision procedures are referred to in [2] (p. 142, fn. 212). The
tableau method (see [1], ch.9), essentially dual to Gentzen's method, can also solve
this problem. Various results concerning the decision problem for intermediate
propositional logics. i.e., propositional logics between the intuitionistic and the
classical, are given in [6].

In this paper we will present a syntactic decision procedure for the disjunction-
free fragment of H . With the help of a result of A. Diego [3] we will show that
any decision procedure for the disjunction-free fragment of H , and hence also ours,
can serve for all �nitely axiomatizable disjunction-free intermediate logics. These
logics were proved decidable in [6] also with the help of Diego's result.

1. The system hin. The language L of hin consists of (1) ?|propositional
constant, (2) ! |logical connective, (3) p1; p2; . . .|propositional letters and (4)
(,)|parentheses. The set For of formulas over L is the smallest set contain-
ing: ?; p1; p2; . . . and closed under the following formation rule: if A and B are
formulas then (A ! B) is a formula. P;Q;R; . . . and A;B;C;D;A1; B1; . . . are
metavariables ranging over f?; p1; p2; . . . g and For, respectively. We also suppose
that, where there are several occurrences of !, the �rst one appearing on the left
has the highest priority, i.e., we will write

A! B ! � � � ! C ! D instead of (A! (B ! (� � � ! (C ! D) � � � ))):

For each A 2For we de�ne its degree j A j2 ! and sets of its antecedent and
consequent parts, ant(A), con (A) �For, as follows:

a) j P j= 0; j A! B j=j A j + j B j +1;
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b) ant(P ) = ?, ant(A! B) = fAg[ ant(B);

c) con(P ) = fPg; con(A! B) = fA! Bg[con(B).

The axiom schemes of hin are:

(A1) P ! P ; (A2) ?! P .

The rule schemes of hin are:

A! � � � ! An ! A

Ai1 ! � � � ! Ain ! A

(P{ permutation), where (i1; . . . ; in) is any

permutation on then� tuple (1; . . . ; n)

A! A! B

A! B
(C{contraction)

A

B ! A
(W{weakening)

A! B C ! D

A! (B ! C)! D
(AL{arrow on the left)

A! B B ! C

A! C
(TR{transitivity):

The sign will indicate that A is provable in hin.

Lemma 1. (1) A! A; (2) A! B ! A;

(3) (A! B ! C)! (A! B)! A! C; (4) `?! A.

Proof. (1) By induction on j A j.

(2)
A! A (by (1))

B ! A! A

A! B ! A
(P )

(W )

(4) By induction on j A j �

Lemma 2. The following rules are derivable in hin:

A A! B ! C

B ! C
(MP{ modus ponens);(1)

A1 ! � � � ! An ! A A! B

A1 ! � � � ! An ! B
(GTR{generalized TR);(2)

A1 ! � � � ! An ! A B ! C

A1 ! � � � ! An ! (A! B)! C
(GAL{generalized AL);(3)

A1 ! � � � ! An ! A B

B(A! =A1 ! � � � ! A~n)
(M|mix with respect toA)(4)
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where B(A ! =A1 ! � � � ! An !) is the formula obtained from B by writing
\A1 ! � � � ! An !" instead of \A !" in all places where A has occurrences as
an antecedent part of B.

Proof : (1)
A

B!A
(W ) A! B ! C
B!B!C

B!C
(C)

(TR)

(2) By induction on n.

A! A B ! C (AL)(3)

A1 ! � � � ! An ! A A! (A! B)! C (GTR)

A1 ! � � � ! An ! (A! B)! C

(4) By induction on the number of occurrences of A in B as antecedent
part.

Remark. Modus ponens, with the conclusion of degree � 1, does not re-
duce the set of theorems of the implication-negation fragment inH of the Heyting
propositional calculus. The rule (M) is a generalization of (GTR) and of (TR) as
well.

The following theorem is an immediate consequence of the lemmas above and
well-known facts about the Heyting propositional calculus H (cf. [1, 5]).

Theorem 1. A is provable in hin i� A is provable in H.

2. The (TR){elimination theorem. Following Getzen's proof of the cut-
elimination theorem (see [5]), an analogous theorem can be proved for the formal
system hin.

Theorem 2. If A is provable in hin, then A is provable without (TR).

In fact we should prove a (M){elimination theorem by a double induction of
the degree j A j of the cut formula A of (M) and the rank of the proof, appropri-
ately de�ned.

3. Characterization of hin. Theorem 3. ` A, where A � A1 ! � � � !
An ! P* i� at least one of the following conditions is satis�ed:

(i) P 2 ant(A) or ?2 ant(A);

(ii) there exists an i0; 1 � i0 � n, such that P 2 con(Ai0 ) or ?2 con(Ai0)
and for every formula B 2 ant(Ai0 ) ` A1 ! � � � ! An ! B.

Proof. The \only if" part. By induction on the length of the proof of A. If
A is an axiom, then condition (i) is satis�ed. We will consider the cases when the
last step in the proof is made by one of the rule schemes: (P ); (C); (W ) or (AL).
(By Theorem 2 every theorem of hin can be proved by a (TR){free proof). It is not

*"�\ is used as short for \is the same as".
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diÆcult to see that the rule schemes (P ); (C) and (W ) are closed for conditions (i)
and (ii), i.e. if the upper formulas of these rules satisfy one of the conditions (i) or
(ii), then lower formulas satisfy the same condition. Let us consider the case with
the (AL)-rule. We suppose that the last step of the proof of A is

A1 ! C D ! A3 ! � � � ! An ! P

A1 ! (C ! D) ! A3 ! � � � ! An ! P
(AL);

where A2 � C ! D. By the induction hypothesis, D ! A3 ! � � � ! An ! P
satis�es (i) or (ii). If P 2 fA3; � � � ; Ang or ? 2 fA3; . . . ; Ang, then the derived
formula A satis�es (i). If D ! A3 ! � � � ! An ! An ! P satis�es (ii) and
i0 2 f3; . . . ; ng then the derived formula has the required property (ii) too. We
must also consider the following subcases: (1) D � P or D �?; (2) D � D1 !
� � � ! Dk ! Q, where Q � P or Q �? and for every i(1 � i � k); ` D ! A3 !
� � � ! An ! Di. Subcase (1): the derived formula satis�es (ii), as ` A1 ! C (by
the induction hypothesis), and ` A1 ! � � � ! An ! C (by (P ) and (W )). Subcase
(2): from A1 ! C, we derive A1 ! � � � ! An ! C by (W ) and (P ). From A1 ! C
and D ! A3 ! � � � ! An ! Di (1 � i � k), we derive A1 ! A2 ! A3 ! � � � !
An ! Di (1 � i � k) by (AL). So the derived formula A1 ! � � � ! An ! P
satis�es (ii).

The \if" part. Let us suppose that some formula A � A1 ! � � � ! An ! P
satis�es one of the conditions (i) or (ii). If Ai � P or Ai �? for some i(1 � i � n),
then, trivially, ` A. Let i0 = n and An � B1 ! � � � ! Bk ! Q(Q � P or Q �?)
be. Then we have the following proof of A:

Remark . From the proof above we can see that conditions (i) and (ii), with-
out the parts which are related to the propositional constant ?, characterize the
implicational fragment of the Heyting propositional calculus, i.e. the positive im-
plicational propositional calculus (cf. [2, p. 140]).

4. Decision procedure for hin. A formula A � A1 ! � � � ! An ! P
called (1) trivially provable if there exists an i(1 � i � n) such that Ai � P or
Ai �? and (2) trivially refutable if there is no i(1 � i � n) such that P 2 con(Ai)
or ?2 con(Ai).

Description of the decision tree for A (DTA). We make DTA by a procedure
based on conditions (i) and (ii) of Theorem 3, as follows:
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(I) The formula A is the initial node of the tree DTA.

(II) If we denote an arbitrary node of the tree DTA by C � C1 ! � � � !
Cm ! P , then:

a) if C is trivially provable or trivially refutable, then C is the maximal
element of the tree;

b) if a) is not satis�ed, then there exists a formula B 2 ant(C) such that
P 2 con(B) or ?2 con(B). From C the tree will ramify into the nodes C1 !
� � � ! Cm ! D, for every D 2 ant(B). In this case we say that the ramifying from
node C is made in accordance with formula B.

The length l(DTA) of DTA is k � 1, where k is the number of nodes of the
longest branch of DTA (i.e. of the branch with the maximal number of nodes).

Obviously, in the general case the description of the decision tree above does
not de�ne only one tree. In other words, by this description to every formula A
corresponds a �nite collection fDTAg of trees.

The tree DTA will be called the tree of positive (negative) decision for A, if
l(DA) � k where k is �xed and depens on A, and all its maximal elements are
trivially provable (if l(DTA) > k or there is a maximal element which is trivially
refutable). This k is determined precisely by the following theorem.

Theorem 4. A i� there exists a tree DTA of positive decision for A such
that l(DT ) �

P
B2ant(A)

j B j.

First, we will prove the following lemma.

Lemma 3. If DTA!B and DTC!D are the trees of positive decision for
A ! B and C ! D, respectively, then there exists a tree of positive deci-
sion DTA!(B!C)!D for A ! (B ! C) ! D such that l(DTA!(B!C)!D) �
l(DTA!C) + l(DTC!D) + 1.

Proof . We are going to construct the tree DTA!B Æ DTC!D which is a
tree of positive decision for A ! (B ! C) ! D and l(DTA!B Æ DTC!D) �
l(DTA!B) + l(DTC!D) + 1. The tree DTC!D will be used as a basis for the
construction. Let us suppose that j C j> 1. Every node of DTC!D has the
form C ! D0 and will be replaced by the formula A ! (B ! C) ! D0, and
every time that the ramifying from node C ! D0

1 ! � � � ! D0
k ! P is made

in accordance with formula C, we will make one additional ramifying from the
corresponding node A ! (B ! C) ! D0

1 ! � � � ! D0
k ! P to the node A !

(B ! C) ! D0
1 ! � � � ! D0

k ! B and hence all ramifyings will be made in the
same way as in DTA!B , replacing every node of the form A! B0 by the formula
A ! (B ! C) ! D0

1 ! � � � ! D0
k ! B0. (The initial node of DTA!B , after the

replacement, corresponds to A ! (B ! C) ! D0
1 ! � � �D0

k ! B). When made
in such a way, the tree DTA!B Æ DTC!D will be a tree of positive decision for
A! (B ! C)! D. The maximal length of DTA!B ÆDTC!D could be obtained
in the case when the ramifying is made from the last but one node of the longest
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branch of DTC!D in accordance with formula C. Then l(DTA!B Æ DTC!D) =
l(DTA!B) + l(DTC!D). For C � Q, we make the tree DTA!B Æ DTQ!D in
the same way as above, excluding the case when some of the maximal elements
of the tree DTQ!T has the from Q ! D0

1 ! � � � ! D0
k ! Q. In this case, we

make the ramifying from the node A ! (B ! Q) ! D0
1 ! � � � ! D0

k ! Q
(which is obtained by replacing Q ! D0

1 ! � � � ! D0
k ! Q) in accordance with

the formula (B ! Q) to the node A ! (B ! Q) ! D0
1 ! � � � ! D0

k ! B
and hence we make all ramifying in the same way as in DTA!B , replacing nodes
A ! B0 by A ! (B ! Q) ! D0

1 ! � � � D0
k ! B0: DTA!B Æ DTQ!D will be a

tree of positive decision for A ! (B ! Q) ! D, and its maximal length can be
l(DTA!B) + l(DTQ!D) + 1. For C �? (l(DT?!D) = 0), the corresponding tree
of positive decision for A! (B !?)! D could be made in a similar way. In this
case it could be that l(DTA!B ÆDT?!D) = l(DTA!B) + 1: a

Proof of Theorem 4. The \only if" part. By induction on the length of the
proof of A. The most interesting case is when the last step in the proof of A is

B ! B1 � � � ! Bm ! P C ! D1 ! � � � ! Dk ! Q

(A �)B ! ((B1 ! � � � ! Bm ! P )! C)! D1 ! � � � ! Dk ! Q
(AL):

The tree DTB!B1!���!Bm!P Æ DTC!D1!Æ!Dk!Q is a tree of positive decision
for A (in accordance with Lemma 3), furthermore

l(DTB!B1!���!Bm!P ÆDTC!Dcdots!Dk!Q) �j B j+ j B1 j+ � � �+ j Bm j+ j C j +

+ j D1 j + � � �+ j Dk j +1 (by Lemma 3)

�j B j+ j B1 j+ � � �+ j Bm j +m+ 1+ j C j+ j D1 j+ � � �+ j Dk j=
X

D2ant(A)

j D j :

The \if" part is justi�ed completely by Theorem 3. a

As an immediate corollary of Theorem 4 we have that not ` A i� for every
DTA; l(DTA) >

P
B2ant(A)

j B j or there is a maximal element which is trivially

refutable; in other words every DTA is a tree of negative decision for A.

So by the procedure founded on Theorem 3 for every A 2 For we can answer
the following question whether A is a theorem in H or not?

Examples 1) P ! Q! P is trivially provable. So ` P ! Q! P .

(P ! Q! R)! (P ! Q)! P ! R(2)

� �

(P ! Q! R)! (P ! Q)! P ! P
(trivially provable)

(P ! Q! R)! (P ! Q)! P ! Q

����
(! Q! R)! (P ! Q)! P ! P

(trivially provable)
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So ` (P ! Q! R)! (P ! Q)! P ! R.

3) ((P ! Q)! P )! P���
((P ! Q)! P ! Q

(trivially refutable)

So not ` ((P ! Q)! P )! P .

4) ::P ! P � ((P !?)!?)! P���
((P !?)!?)! P !?���

((P !?)!?)! P ! P !?���
...

It is clear that the desicion tree for ::P ! P is of length greater than
j ::P ! P j (it is in fact in�nite), and so not ` ::P ! P .

5. Disjunction-free intermediate logics. Let X be any propositional
logical system with connectives :;!;^ and _. A disjunction-free formula of the
logic X is an formula in which the connective _ does not occur. The disjunction-
free fragment of the logic X is the set of all disjunction-free formulas which are
theorems of X . A propositional logic X is a disjunction-free logic if the symbol
_ is de�nable in the disjunction-free fragment of X , i.e., there is a disjunction-free
formula C(P;Q) such that for any disjunction free formulas A and

X
A _ B $

C(P=A;Q=B), where P and Q are distinct propositional letters that occur in
C: C(P=A;Q=B) is the formula obtained from C by substituting A and B for P
and Q, respectively, at each occurrence of P and Q in C, and A $ B � (A !
B) ^ (B ! A): X 0 is an :;^;_-extension of H if all logical connectives of X 0 are
among e;!;^;_, and for every formula A : if

H
A, then

X=
A.

Knowing that
H
(A ^ B ! C) $ (A ! B ! C);

H
A ! (B ^ C) $

(A ! B) ^ (A ! C) and
H
A ^ B i�

H
A and

H
B, the decision procedure

given above can be used as a decision procedure for the disjunction-free fragment
of H . Furthemore, this procedure is applicable to every �nitely axiomatizable
disjunction-free :;^;_-extension of H .

By a result of A. Diego (cf.[3, 6, 7] and [4, p. 80]) the set S of all disjunction-
free propositional formulas built out of P1; . . . ; Pk, which are non-equivalent in H ,
is �nite, and so the conjuction of all the instances A(Q1=C1; . . . ; Qm=Cm) of the
formula A, denoted by &fP1; . . . ; PkgA, whereQ1; . . . ; Qm are all the propositional
letters of A and C1; . . . ; Cm 2 S, is also �nite. Furthermore, according to [7] the
construction of S given in [3] is recursive.

Let H be the Heyting propositional calculus formulated as in [1, p. 433] with
modus ponens as the only rule of inference.
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Theorem 5. If X is a �nitely axiomatizable disjunction-free :;^;_-extension
of H which is obtained by adding the formulas A; . . . ; An to H as axiom schemes,
then:

X
A if

H
(&fP1; . . . ; Pkg(A1 ^ � � � ^ An)) ! A, where P1; . . . ; Pk are all

the propositional letters of A.

Proof. Let C be &fP1; . . . ; Pkg(A1 ^ � � � ^ An). If
H
C ! A, then it is

clear that
X
A. Converse: let m be the length of the proof �A for A in X .

For m = 0; A is an axiom of X , and so
H
C ! A. Let us suppose that the

last step of the proof �A is: B B!A
A

, and let Q1; . . . ; Qj ; P1; . . . ; Pk be all the
propositional letters that occur in �A. If �A(Q1; . . . ; Qj ; P1; . . . ; Pk) is a proof for
A in X , then it is easy to see that �A(Q1=P1; . . . ; Qj=P1; P1; . . . ; Pk) is a proof
for A in X of the same length as �A. By the induction hypothesis we have

H
C ! B(Q1=P1; . . . ; Qj=P1; P1; . . . ; Pk) and

H
C ! B(Q1=P1; . . . ; Qj=P1,

P1; . . . ; Pk)! A; hence
H
C ! A: a

Note that the given decision procedure enables us to reconstruct a proof when
the examined formula is a theorem.
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