ONE OF THE POSSIBLE FORMAL DESCRIPTIONS OF DEDUCIBILITY

Branislav R. Boričić

Abstract. Having in mind different investigations of implication, i. e., of the logical consequence relation, we will try to point out a general kernel of formal systems in which the deducibility relation is stated in the system itself. In connection with any formal theory θ we observe a formal theory $\theta(\rightarrow)$ which is able to define the fundamental factor of θ -deducibility. By showing that the basic binary relation of $\theta(\rightarrow)$ is just a formal description of the metatheoretic deducibility relation of θ , the essential statement, the assertion 2.9., justifies contemplation of a formal theory like $\theta(\rightarrow)$. Furthermore, by the assertions 3.3 and 3.4. an interesting conection between formal theories $\theta(\sim)$ (cf. [1]) and $\theta(\rightarrow)$ is given.

1. Gentzen's idea of sequent calculi and the paper [1] of S. B. Prešić have influenced immediately on this contemplation. We will try to describe a procedure by which we can assign an *inequational formal theory*, i. e., a formal theory in which some binary predicate is a preordering, to any formal theory. As thingc stand, a deduction relation (denoted by \vdash and defined in the usual way) is a preordering, relation and so every logical system is in connection with some preordered systems.

2. Let θ be a formal theory. By $\theta(\rightarrow)$ we will denote a formal theory defined as follows:

2.1. The set of basic symbols of the initial formal theory θ will be extended by three **new** symbols: \top , & and \rightarrow ; \top is a new constant, & is a binary operational symbol and \rightarrow is a binary predicate symbol.

The fundamental notions are defined as usual:

2.2. Definition. (i) \top and all formulas of θ are preformulas of $\theta(\rightarrow)$.

(ii) If A and B are preformulas of $\theta(\rightarrow)$, then & AB is a preformula of $\theta(\rightarrow)$.

(iii) Preformulas are only those expressions obtained by (i) and (ii)

2.3. Definition. If A and B are preformulas of $\theta(\rightarrow)$, then $A \rightarrow B$ is a formula of $\theta(\rightarrow)$.

AMS Subject Classification (1980): Primary 03 B 05, 03 G 25.

The set of all formulas of the formal theory θ will be denoted by For (θ) . Henceforth, A, B, C, D, A₁,... and F, G, F₁, G₁,... will be metavariables ranging over preformulas of $\theta(\rightarrow)$ and formulas of θ , respectively.

2.4. Axioms of $\theta(\rightarrow)$ are defined by the following:

(i) $F \to F$, $F \to \top$, $\&AB \to \&BA$.

(ii) If F is an axiom (schemes) of θ , then $\top \to F$ is an axiom (scheme) of $\theta(\to)$.

(iii) If $\frac{G_1,\ldots,G_{k-1},G_k}{G}$ is a rule (scheme) of inference of θ , then the formula $\& G_1 \& \ldots \& G_{k-1} G_k \to G$ is an axiom (scheme) of $\theta(\to)$.

(iv) Axioms are only those formulas obtained by (i), (ii) and (iii),

2.5. The rule schemes of $\theta(\rightarrow)$ are

$$(\text{IKS})\frac{A \to B \ A \to C}{A \to \& BC}, \ (\text{IKA})\frac{A \to B}{\& AC \to B}, \ (\text{TR})\frac{A \to B \ B \to C}{A \to C}.$$

2.6. LEMMA. (1) $\downarrow_{\theta(\rightarrow)} A \to A;$

- (3) $|_{\theta(\rightarrow)} A \rightarrow \top; |_{\theta(\rightarrow)} \& A \top \rightarrow A;$
- (4) if $|_{\overline{\theta}(\to)} A \to B$ and $|_{\overline{\theta}(\to)} C \to D$ then $|_{\overline{\theta}(\to)} \& AC \to \& BD;$
- (5) $|_{\theta(\rightarrow)} \& AB \to C \text{ iff } |_{\theta(\rightarrow)} \& BA \to C;$
- (6) $\downarrow_{\underline{a}(\underline{\rightarrow})} A \rightarrow \&BC \quad iff \quad \downarrow_{\underline{a}(\underline{\rightarrow})} A \rightarrow \&CB;$
- (7) $|_{\mathcal{H}(\to)} \&\&ABC \to D \text{ iff } |_{\mathcal{H}(\to)} \&A\&BC \to D;$
- (8) $|_{\theta(\rightarrow)} A \rightarrow \&\& BCD \quad iff \quad |_{\theta(\rightarrow)} A \rightarrow \& B \& CD;$

(9) if $A \to \& BC$ is k-provable in $\theta(\to)$, then $A \to B$ is k_1 -provable and $A \to C$ is k_2 -provable in $\theta(\to)$, where $k_1, k_2 < k^1$.

Proof. (1)—(8) Directly—using the rule schemes of $\theta(\rightarrow)$. (9) By induction on k.

According to 2.6. Lemma (5)—(8), we see that the preformulas & AB and & ABC can be replaced by & BA and & ABC, respectively, in the framework of $\theta(\rightarrow)$, and conversely².

2.7. LEMMA. Iff $\models_{\mathfrak{g}} F$, then $\models_{\mathfrak{g}(\to)} \top \to F$.

Proof. By induction on the length of the proof for F in θ .

2.8. COROLLARY. If $\mid_{\overline{\theta}} F_1$ and ... and $\mid_{\overline{\theta}} F_n$, then $\mid_{\overline{\theta}(\to)} \top \to F_1 \& \dots \& F_n$ $(n \ge 1)$.

2.9. THEOREM. $F_1 \ldots, F_n \models_{\theta} F$ iff $\models_{\theta(\rightarrow)} F_1 \& \ldots \& F_n \to F \ (n \ge 1).$

¹*F* is *k*-provable in θ iff the length of the shortest proof of *F* in θ is *k*. ²So, we can write A & B instead of & AB.

Proof. The "only if" part. By induction on the length m of the proof of $F_1, \ldots, F_n \models_a F$.

Case m = 1: If F is the axiom of θ , then $\top \to F$ is the axiom of $\theta(\to)$. By 2.6. Lemma (3) $\mid_{\overline{\theta(\to)}} F_1 \& \ldots \& F_n \to \top$, and by (TR) we have $\mid_{\overline{\theta(\to)}} F_1 \& \ldots \& F_n \to F$. If F is F_1 for some $1 \leq i \leq n$, say that F is F_1 , then $F_1 \to F$ is the axiom of $\theta(\to)$. Hence, using the rule scheme (IKA) we have $\mid_{\overline{\theta(\to)}} F_1 \& \ldots \& F_n \to F$.

Case m > 1: The following subcases are possible:

(i) F is either the axiom of θ or F_1 (for some $1 \le i \le n$);

(ii) F is the consequence of some preceding formulas by the rule (scheme) $\frac{G_1,\ldots,G_k}{F}$. The subcase (i) is the same as the case m = 1. Subcase (ii): by induction hypothesis: $\downarrow_{\theta(\to)} F_1 \& \ldots \& F_n \to G_1$,

$$F_1\&\ldots\&F_n\to G_k;$$

using rule scheme (IKS) (K-1) times, we have

$$F_1\&\ldots\&F_n\to G_1\&\ldots\&G_k$$

 $G_1\&\ldots\&G_k\to F$ is the axiom scheme of $\theta(\to)$. Therefore, by (TR) we derive $|_{\overline{\theta(\to)}}F_1\&\ldots\&F_n\to F.$

The "if" part. By induction on the number m of uses of the rule schemes (IKS), (IKA) and (TR).

Case $m = 0 : F_1 \& \ldots \& F_n \to F$ is the axiom of $\theta(\to)$. Then either $\frac{F_1, \ldots, F_n}{F}$ is the rule of θ or n = 1 and F_1 is F or F_1 is \top or F is \top . In any case we have $F_1, \ldots, F_n \models_a F$.

Case m > 0: The following subcases are possible:

(i) in the last step of the proof we used the rule scheme (IKA) on the formula $F_1 \& \ldots \& F_i \to F$ (for some $1 \le i \le n$);

(ii) in the last step of the proof we used the rule scheme (TR) on the formulas $F_1 \& \ldots \& F_n \to G_1 \& \ldots \& G_k$ and $G_1 \& \ldots \& G_k \to F$. Subcase (i): by induction hypothesis

$$F_1,\ldots,F_i \models F$$

and so $F_1, \ldots, F_i, F_{i+1}, \ldots, F_n \models F$. Subcase (ii): by 2.6 Lemma (9) we have

 $\begin{array}{c} & & |_{\overline{\theta(\rightarrow)}} \ F_1 \& \dots \& F_n \to G_1, \\ & & \dots \\ & & |_{\overline{\theta(\rightarrow)}} \ F_1 \& \dots \& F_n \to G_k, \text{ and by induction hypothesis:} \\ & & F_1, \dots, F_n \models_{\overline{\theta}} G_1, \\ & & \dots \\ & & F_1, \dots, F_n \models_{\overline{\theta}} G_k, \end{array}$

therefrom $F_1, \ldots, F_n \models_a F$ which was to be demonstrated.

In accordance with 2.7. Lemma, and 2.9. Theorem, we see that the binary predicate \rightarrow of $\theta(\rightarrow)$ is, in fact, a formalization of the deduction relation \vdash_{θ} , the binary operation & is related to the metatheoretic "and", while the constant \top characterizes the set $\operatorname{Th}(\theta)$ of all theorems of θ in the sense that $\operatorname{Th}(\theta) = \{F | \top \rightarrow F \text{ is provable in } \theta(\rightarrow)\}.$

Assording to (TR) and 2.6. Lemma (1), we will call $\theta(\rightarrow)$ an *inequational* description of θ .

2.10. THEOREM. For $(\theta) = \text{Th}(\theta)$ iff For $(\theta(\rightarrow)) = \text{Th}(\theta(\rightarrow))$.

Proof. Let $F_1\&\ldots\&F_n \to G_1\&\ldots\&G_m$ be any formula of $\theta(\to)$. If For(θ) =Th(θ), then, in accordance with 2.7. Lemma, $|_{\overline{\theta(\to)}} \top \to G_1, \ldots, |_{\overline{\theta(\to)}} \top \to G_m$; so using the rule scheme (IKS) $|_{\overline{\theta(\to)}} \top \to G_1\&\ldots\&G_m$. According to 2.6. Lemma (3), $|_{\overline{\theta(\to)}} F_1\&\ldots\&F_n \to \top$, and so, by (TR) we have $|_{\overline{\theta(\to)}} F_1\&\ldots\&F_n \to G_1\&\ldots\&G_m$. On the other hand, if For $(\theta(\to)) =$ Th $(\theta \to)$), then all formulas of the form $\top \to F$ are theorems of $\theta(\to)$, and according to 2.9. Theorem Th (θ) =For (θ) .

Consequently, (syntactical) consistency is preserved in passing from θ to $\theta(\rightarrow)$.

3. Let $A \leftrightarrow B$ iff $A \to B$ and $B \to A$ in $\theta(\to)$.

3.1. COROLLARY. $\vdash_{\underline{\theta}} F \text{ iff } \vdash_{\underline{\theta}(\to)} F \leftrightarrow \top$.

3.2. LEMMA. (1) $\downarrow_{\overline{\theta(\rightarrow)}} A \leftrightarrow A$; (2) $\downarrow_{\overline{\theta(\rightarrow)}} A \& \top \leftrightarrow A$; $\downarrow_{\overline{\theta(\rightarrow)}} A \& A \leftrightarrow A$; (3) if $A \leftrightarrow B$, then $B \leftrightarrow A$; (4) if $A \leftrightarrow B$ and $B \leftrightarrow C$, then $A \leftrightarrow C$; (5) if $A \leftrightarrow B$ and $C \leftrightarrow D$, then $A \& C \leftrightarrow B \& D$; (6) if $A \to B$, then $A \leftrightarrow A \& B$.

Proof. For instance (6). Of course, $A \to B$ and $A \to A$, by rule scheme (IKS) we derive $A \to A\&B$. On the other hand, from $A \to A$, by rule scheme (IKA) we derive $A\&B \to A$.

3.3. Let $\theta(\sim)$ be the equational formal theory described in [1] of S. B. Prešić. The following statement is the consequence of the preceding Lemma.

3.4 LEMMA. If $|_{\mathcal{B}(\sim)} A \sim B$, then $|_{\mathcal{B}(\rightarrow)} A \leftrightarrow B$.

3.5. THEOREM. If $|_{\mathcal{B}(\rightarrow)} A \leftrightarrow B$, then $|_{\mathcal{B}(\sim)} A \sim B$.

Proof. Let *A* ≤ *B* in *θ*(~) iff *A*&*B* ~ *A* in *θ*(~). First we will prove that if *A* → *B* in *θ*(→), then *A* ≤ *B* in *θ*(~). From *F*&*F* ~ *F* we have *F* ≤ *F*; if *F* is an axiom of *θ*, then ⊤&*F* ~ ⊤ in *θ*(~), and ⊤ ≤ *F*; if *A*&⊤ ~ *A* in *θ*(~), then *A* ≤ ⊤ in *θ*(~); for a rule of inference $\frac{G_1, ..., G_k}{G}$ of *θ*, G_1 &...&*G_k*&*G* ~ *G_1*&...&*G_k* is an axiom of *θ*(~), therefrom G_1 &..., &*G_k* ≤ *G*; if *A* ≤ *B* and *A* ≤ *C*, then *A* ≤ *B*&*C*; if *A* ≤ *B*, then *A*&*C* ≤ *B*; if *A* ≤ *B* and *B* ≤ *C*, i.e. *A*&*B* ~ *A* and *B*&*C* ~ *B*, then we derive immediately *A*&*B*&*C* ~ *A*&*C* and *A*&*B*&*C* ~ *A*&*B*, and so *A*&*C* ~ *A*, i.e. *A* ≤ *C*. Also, *A* ≤ *B* and *B* ≤ *A* iff *A* ~ *B*, Therefore, if *A* → *B* and *B* → *A* in *θ*(→), then *A* ≤ *B* and *B* ≤ *A* in *θ*(~), i.e. *A* ~ *B* in *θ*(~).

4. THEOREM. If θ is a formal theory in a language containing the binary operations \wedge, \Rightarrow such that (1) $F, G \models_{\theta} F \wedge G, F \wedge G \models_{\theta} F$ and $F \wedge G \models_{\theta} G$; and (2) $F \models_{\theta} G$ iff $\models_{\theta} F \Rightarrow G^3$, then $\models_{\theta(\rightarrow)} F_1 \& \ldots \& F_n \to G_1 \& \ldots \& G_m$ iff $\models_{\theta} F_1 \wedge \ldots \wedge F_n \Rightarrow G_1 \wedge \ldots \wedge G_m(m, n \ge 1)$.

Proof. This can be proved almost in the same way as Theorem 3 in [1].

In this case, when conditions (1) and (2) of the preceding theorem are satisfied, by mapping g: For $(\theta(\rightarrow)) \rightarrow$ For (θ) , defined by equality $g(F_1 \& \ldots \& F_n \rightarrow G_1 \& \ldots \& G_m) = F_1 \land \ldots \land F_n \Rightarrow G_1 \land \ldots \land G_m^4$, the theorems of $\theta(\rightarrow)$ will be mapped into theorems of θ . We will call the formal theory $\theta(\rightarrow)$ an *inequational* reformulation of θ .

4.1. It can be proved (cf. [1] and [2]) that the "corresponding" formal theories $\theta(\sim)$, and consequently $\theta(\rightarrow)$, are in the cases of the intuitionistic propositional calculus, classical propositional calculus and classical first-order predicate calculus (these are the cases of the equational (inequational) reformulations) just corresponding algebras: pseudo-Boolean. Boolean and cylindric. Furthermore, there is an isomorphism between $\theta(\sim)$ (or $\theta(\rightarrow)$) and the Lindenbaum algebra of θ .

REFERENCES

- [1] S. B. Prešić, Equational reformulation of formal theories, Publ. Inst. Math. (N. S.) (Beograd) 19(33) (1975), 131-138. (Math. Rev. 1977: 4921)
- [2] B. R. Boričić, Equational reformulations of intuitionistic propositional calculus and classical first-order predicate calculus, Publ. Inst. Math. (Beograd) (N. S.) 29(43), (1981), 23-28.

Katedra za matematiku Ekonomski fakultet 11000 Beograd, Jugoslavija (Received 14 12 1982)

³Cf. Cond. 1. and Cond. 2. in [1].

⁴ If $F_i = \top$ or $G_j = \top$ in $\theta(\rightarrow)$ (for some $1 \le i \le n$ or $1 \le j \le m$), then F_i or G_j in θ must be replaced by some axiom of θ .