PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 34 (48), 1983, pp. 3-5

THE REGULATION NUMBER OF A GRAPH

Jin Akiyama, Frank Harary

Abstract. The regulation number r(G) of a graph G with maximum degree d is defined as the smallest number of new points in a d-regular supergraph. It is shown that for $d \ge 3$, every possible value of r(G) between zero and the maximum established by Akiyama, Era and Harary, namely, d(mod 2)+1+d, is realized by some graph. Also, a characterization is given for G to have r(G) = n.

1. Introduction. The regulation number r(G) of a graph G with maximum degree d is the maximum number of new point needed to get a d-regular supergraph. Akiyama, Era and Harary [1] determined the following bounds.

THEOREM A. For a graph G with maximum degree $d \geq 3$,

(1)
$$r(G) \le d+2$$
 when d is odd,

(2) $r(G) \le d+1$ when d is even

Our first purpose is to demonstrate the interpolation theorem that for each n between 0 and the upper bounds in (1) and (2), there exists a graph with regulation number n. This is accomplished by constructing such a graph.

A necessary and sufficient condition is then derived for a graph to have regulation number n, using the notion of an "*f*-factor" due to Tutte, [5].

In general we follow the notation and terminology of [bf 4].

2. Interpolation. We shall show that for each $d \ge 3$, every integer n between zero, the smallest possible value of r(G), and the maximum value d + 1 od d + 2 depending on the parity of d, n is realized as the regulation number of some graph. In the construction of such a graph, it is convenient to use the notation $G_1 + G_2 + G_3$ of [2] for the iterated join of three disjoint graphs G_i defined as the union $(G_1 + G_2) \cup (G_2 + G_3)$. Similarly, the iterated join of $n \ge 3$ disjoints graphs is written $G_1 + G_2 + G_3 + \cdots + G_n$ and is defined as $(G_1 + G_2) \cup (G_2 + G_3) \cup \cdots \cup (G_{n-1} + G_n)$. We shall encounter the special case $K_1 + K_1 + \cdots + K_1 + G_{k+1} + \cdots + G_n$ where $G_{k+1} \neq K_1$ and will abbreviate it by $P_k + G_{k+1} + \cdots + G_n$ (as i this case the join of the first k copies of K_1 gives the path P_k).

THEOREM 1. Let $d \geq 3$.

1. If d is odd and $0 \le n \le d+2$, then there is a graph H_n with maximum degree d and $r(H_n) = n$.

2. If d is even and $0 \le n \le d+1$, then there is a graph J_n with maximum degree d and $r(J_n) = n$.

Proof. When n = 0 and $d \ge 3$ is odd, one can take H_0 as a *d*-regular graph or as a spanning supgraph of such a graph. For n = d + 2, we have $H_n = K_1 + \bar{K}_2 + K_{d-1}$. (The case d = 3 was illustrated in [1]). Now for any positive integer n properly between 0 and d + 2, one possible choice is

$$H_n = P_{d-n+3} + K_2 + K_{d-1}.$$

The proof when d is even is analogous, with

$$J_n = P_{d-n+2} + K_2 + K_{d-1}.$$

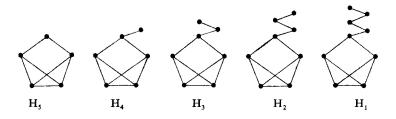


Figure 1. Realization graphs for regulation number interpolation

Figure 1 shows the graphs H_1 to H_5 when d = 3. The smallest 3-regular graph containing these H_n is shown in Figure 2. As noted in [bf 4], this is the smallest cubic graph with a bridge.

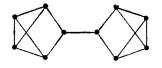


Figure 2. The smallest cubic graph with a bridge

3. Characterization, Let G be any graph with p points $V = \{1, 2, ..., p\}$. Let $f = (f_1, ..., f_p)$ be a vector of p non-negative integers. Then an *f*-factor is a spanning subgraph F of G such that the degree of point i in F is f_i . We recall the following result of Tutte [5] giving a criterion for the existence of an *f*-factor.

THEOREM B. A graph G has an f-factor if and only if for any two disjoint subsets X and Y of V, with o(X, Y) the number of odd components of G - X - Y, and d(i, G - X) the degree of i in G - X we have

(3)
$$o(X,Y) + \sum_{i \in Y} \{f_i - d(i,G-X)\} \le \sum_{i \in D} f_i.$$

4

Let $d_i = d(i, G)$ and let the *deficiency* of v_i in G be $f_i = d - d_i$. Then it can easily be verified that G has regulation number 0 if and only if \overline{G} has an f-factor, where $f = (f_1, \ldots, f_p)$ is the vector of deficiencies. We will extend this observation to obtain a criterion for a graph to have regulation number n. Fix n properly between 0 and d + 2 and define the join $I_n = \overline{G} + P_n$, with the additional points labelled $p + 1, \ldots, p + n$. Set $I_0 = G$. If n > 0, let $f_j = d$ for $j = p + 1, \ldots, p + n$ and set $f = (f_1, \ldots, f_{p+n})$.

THEOREM 2. Let $0 \le n \le d+2$ and let G be a graph with maximum degree d. Then r(G) = n if and only if n is smallest integer such that I_n has an f-factor.

Proof. Suppose r(G) = n and consider the set of lines added to $G + \bar{K}_n$ to form a *d*-regular graph. These edges form an *f*-factor in I_n . Suppose there is some integer j < n such that I_j contains an *f*-factor. Then it is easily verified that these edges would regularize $G + K_j$, contradicting the fact that r(G) = n. The converse holds by a similar argument. \Box

Theorem A and Theorem 2 together yield an algorithm which can be used to determine r(G) for a given graph G. However, the paper [3] by Erdoös and Kelly implicitly contains an O(n) algorithm for this purpose even though they studied and determined the induced regulation number of a graph.

Achnowledgement. We thank David Avis heplful comments and for pointing out the preceding paragraph.

REFERENCES

- [1] J. Akiyama, H. Era, F. Harary, *Regular graphs containing a given graph*, Elem. Math. (to appear)
- [2] J. Akiyama, G. Exoo, F. Harary, A graph and its complement with specified properties V: The self-complement index Mathematika 27 (1980), 64-68.
- [3] P. Erdoös, P.J. Kelly, The minimal regular graph containing a given graph, Amer. Math. Monthly 70 (1963), 1074-1075.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
- [5] W. T. Tutte, The factors of graphs Canad. J. Math. 4 (1952), 314-328.

Nippon Ika University Kawasaki, Japan (Received 04 01 1983)

University of Michigen Ann Arbor, U. S. A. (Ulam Professor of Mathematics Boulder, Colorado, U. S. A., (Fall 1982)