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SOME CHARACTERISTICS OF THE PROCESS MEASURE

OF THE AMOUNT OF INFORMATION

Branislav D. Vidakovi�c

Signs and symbols. a = a1a2 . . . an { binary word of length n.

� { empty word.

X { the space of all �nite words over f0; 1g. (� 2 X by de�nition)

l(a) { the length of word a.

a = a1a1a2a2 . . . anan01 { manner of recording the word a required to record two
or more words in the form of one word. For example for the words x, y and z the
record is x yz. From the word x yz it is possible to decode the words x, y or z by
means of general, recursive functions �1; �2 and �3. (We also have � = 01.)

a � b means b = aw, w 2 X (aw is a concatenation of words a and w).

f(x) 4 g(x) means (9C)(8x 2 X)f(x) � g(x) + C.

f(x) � g(x) means f(x) 4 g(x) and g(x) 4 f(x).

The function F (a1a2 . . . an) = 2n�1+

nX
i=1

ai2
n�i gives a one-to-one correspondence

of the set X and the set f0; 1; 2; . . .g. The symbol a will denote both the word and
its corresponding number.

Introduction. The partial recursive function F : Xm+1 ! X of m + 1
arguments is called a process according to argument p if the following applies:
for a word p, F(p; y1; . . . ; ym) exists and if q � p, then F(q; y; . . . ; ym) exists and
F(q; y1; . . . ; ym) � F(p; y1; . . . ; ym).

De�nition 1. The conditional process complexity of (x1; . . . ; xn), given
(y1; . . . ; ym), with respect to the processes F1; . . . ;Fn is

KPF1;...;Fn(x1; . . .xn=y1; . . . ; ym) =

= min
p2X

f�(p)=F1(p; y1; . . . ; ym) = x1; . . . ;Fn(p; y1; . . . ; ym) = xng:
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The function �(p) is a criterion of complexity and it is usually taken as log2 p,
which in the alphabet 0 { 1 is equal to l(p) + C.

Theorem 1. There is a set of optimal m+ 1 dimensional processes accord-

ing to argument p(FÆ(p; y1; . . . ; ym); . . . ;F
Æ
n(p; y1; . . . ; ym)) such that for any other

set of m + 1 dimensional processes according to argument p(G1(p; y1; . . . ; ym); . . . ,
Gn(p; y1; . . . ; ym)) and for any (x1; . . . ; xn)

KPFÆ

1
;...;FÆ

n

(x1; . . . ; xn=y1; . . . ; ym) 4 KPGÆ
1
;...;GÆ

n

(x1; . . . ; xn=y1; . . . ; ym):

The proof of Theorem 1. is standard for this theory and similar with the
proof in [2, p. 91 Theorem 1.2].

From now on, the complexity KPFÆ

1
;...;FÆ

n

(x1; . . . ; xn=y1; . . . ; ym) will be des-
ignated with KP (x1; . . . ; xn=y1; . . . ; ym). KP (x1; . . . ; xn) means KP (x1; . . . ; xn=�
. . . ;�).

We have the following characteristics of the process complexity:

(i) KP (x=y) 4 KP (x) 4 KP (x=y) + 2KP (y)

where K(y) is the Kolmogorov complexity of the word y. Let KP (x=y) = l(p),
that is, FÆ(p; y) = x. Let us form the function

S =

�
FÆ(�2(z); F

Æ(�1(z))); if z has the form ab
�; othervise:

FÆ is an optimal two-dimensional process, and F Æ an optimal function for Kol-
mogorov complexity. Let K(y) = l(py). The function S is a process by construc-
tion. For the program z = pyp the results is x. Further more, we have

KP (x) 4 KPG(x) � l(py) +KP (x=y) � KP (x=y) + 2K(y):

Remark. The constant 2 may be replaced with 1 + " by a more appropriate
coding of the program z.

(ii) KP (x=y) 4 K(x=y) + 2 log2K(x=y)

Let us form a process

J 2(z; y) =

�
F Æ(A(z); y); if z has the formab and l(b) � a
�; otherwise

where A(l(p)pq) = p is general recursive (p; q 2 X). For F Æ(px; y) = x and z =

l(px)px we have

KP (x=y) 4 KPJ (x=y) � l(z) = l((px)) +K(x=y) � K(x=y) + 2l(K(x=y)):

(iii) If F(x) is a process, then KP (F(x)) 4 KP (x).

If for F(x) there exists an inverse function that is also a process, then KP (F(x)) �
KP (x).

(iv) KP (x=y) < KP (x=y; z) (1.1)

KP (x=y) = minfl(p)=FÆ(p; y) = xg = minfl(p)=G(p; y; z) = xg <

< minfl(p)=FÆ(p; y; z) = xg = KP (x=y; z):
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The function G(p; y; z) = FÆ(p; y) has z as a �ctive argument.

(v) For every partial recursive function F we have

KP (y=x; F (x)) � KP (y=x)

KP (y=x; F (x)) = minfl(p)=FÆ(p; x; F (x)) = yg =

= minfl(p)G(p; x) = yg < KP (y=x):

(vi) If F is an invertible partial recursive function, then

KP (x=F (x)) � KP (F (x)=x) � 0 (1.2)

KP (x=F (x)) = minfl(p)=FÆ(p; F (x)) = xg 4 minfl(p)=G(p; F (x)) = xg � 0;

where G(p; F (x)) = F�1(F (x)), which is trivially a process according to p.

KP (F (x)=x) = minfl(p)=FÆ(p; x) = F (x)g 4 minfl(p)=G(p; x) = F (x)g � 0;

where G(p; x) = F (x), which is also a process according to p.

Measure of the amount of information. The process complexity of a
word x is very suitable for de�ning the concept of randomness. Namely, (Schnornr
in [4] shows that to a Martin-L�of random binary sequences ! applies KP (!n) � n,
where !n, is a fragment of the sequences ! of length n. On the other hand, the
complexity is also suitable for de�ning the measure of information. Kolmogorov
de�nes in [1]) the measure of information carried by a word y about word x as

I(y : x) = K(x)�K(x=y) (2.1)

Levin ([5]) also de�nes the measure of information as IP (y : x) = KP (x) �
KP (x=y), where KPA(x) = minfl(p)=A(p) = xg and A(p) is a function such if
A(p) = x, then A(pq) = x. (Those are the so-called pre�x algorithms.)

De�nition 2. The quantity

J(y1; . . . ; ym : x1; . . . ; xn=z1; . . . ; zk) = KP (x1; . . . ; xn=z1; . . . ; zk)�

�KP (x1; . . . ; xn=y1; . . . ; ym; z1; . . . ; zk)

is termed the process measure of the amount of information that (y1; . . . ; ym) carries
on (x1; . . . ; xn) if (z1; . . . ; zk) is known. We have the following characteristics of
measure J:

(i) J(y : x) < 0 (2.2)

The property (2.2) follows from the relation (1.1).

(ii) J(x : x) � KP (x) (2.3)

The relation (2.3) is a direct consequence of (1.15). It can be also shown that
J(px : x) � KP (x), where px is such that FÆ(px) = x.

(iii) J(x; y : z) = J(x : z) + J(y : z=x) (2.4)
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The proof results directly from the de�nition of the measure J .

(iv) The process measure of information may be compared with measure I ,
introduced by (2.1)

I(y : x)� 2 log2K(x=y) 4 J(y : x) 4 I(y : x) + 2 log2K(x)

J(y : x) = KP (x)�KP (x=y) 4 K(x) + 2 log2K(x)�K(x=y) =

I(y : x) + 2 log2K(x):

(v) If F is partial recursive and invertible function, J(F (x) : x) � KP (x),
J(x : F (x)) � (F (x)), J(F (x) : y) � J(x : y).

(vi) It is known that the algorithm measure of the amount of information is
not commutative ([2], [3]), that is, it can be shown only as jJ(y : x) � I(x : y)j 4
12 � I(K(x; y)). Since jJ(y : x)� I(y : x)j 4 (1+ ")l(K(x)), for the process measure
J we have

jJ(y : x)� J(x : y)j 4 (14 + 2")l(K(x; y)):

(vii) For every word x we have J(l(x) : x) 4 2 �K(l(x)).
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