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FINITENESS OF SPECTRA OF GRAPHS OBTAINED BY

SOME OPERATIONS ON INFINITE GRAPHS

Aleksandar Torga�sev

Abstract. In this paper we consider some unary and binary operations on in�nite graphs,
and we investigate when the spectrum of the resulting graph is �nite.

In particular, we consider the induced subgraphs of an in�nite graph, relabeling of its
vertices, the complementary graph, the union, Cartesian product, complete product and direct
sum of two in�nite graphs, the line graph .and the total graph of a graph.

For some of these operations we �nd that the spectrum of the graph so obtained is always
in�nite (direct sum, line and total graph). Among other things, we show that �niteness of the
spectrum of an in�nite graph does not change by any relabeling of its vertices.

1. Preliminaries concerning spectra

In [4], we began investigating the spectra of in�nite graphs restricting our-
selves to connected in�nite simple graphs (undirected graphs without loops or mul-
tiple edges). But since in [3] M. Petrovi�c considered in�nite graphs without the
restriction of connectedness, we shall formulate the needed spectral results for gen-
eral (connected or disconnected) in�nite graphs.

Throughout the paper, by a graph or an in�nite graph, we always mean
an in�nite denumerable (connected or disconnected) simple graph. Its vertex set
V (G) = fv1; v2; . . . g is indexed by natural numbers, and we often identify it with
the set N of natural numbers.

The adjacency matrix A(G) = A = [aij ] of a graph G is an in�nite N � N
matrix de�ned by

aij =

�
ai+j�2; if i; j are adjacent
0; otherwise

where a is a �xed positive constant (O < a < 1).
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Hence the whole graph G is labeled (or weighted), so that vertex vi = i
(i 2 N) has the weight ai�1.

The matrix A = A(G) is a symmetric Hilbert-Schmidt matrix (or operator)
in a separable Hilbert space, because its absolute norm

n(A)2 =

1X
i;j=1

jaij j2

is �nite.

The spectrum �(G) of a graph G is de�ned to be the spectrum a �(A) =
�(A(G)) of this Hilbert-Schmidt operator A(G). Then (see [4], or [5]) the following
holds:

Proposition 1. The spectrum �(G) is always real, and it consists of the zero
and of a �nite or in�nite sequence of non-zero eigenvalues �1; �2; . . . )�1 > �2 �
. . . ), whose multiplicities are �nite.

The sequence �n ! 0 (as n!1), if it is in�nite.

The spectral radius r(G) = kAk � d = a
p
2=(1 � a2)

p
1 + a2, so that the

whole spectrum �(G) lies in the interval [�d; d].
If G has a �nite spectrum, i.e. �(G) = f�1; . . . ; �p; 0g with exactly p (not

necessarily distinct) non-zero eigenvalues �1; . . . ; �p, then we say that G has a p-
�nite spectrum. In this case, the value � = 0 is an eigenvalue and its multiplicity
is in�nite (codimension of the corresponding proper subspace is exactly p).

An in�nite graph G has a �nite spectrum if and only if it is of �nite type (see
[4] or [5]), i.e. G = g(N1; . . . ; Nk), where g is its canonical image (a �nite graph with
k vertices, the quotient graph with respect to the following equivalence relation in
the set V (G) : x � y i� they have the same neighbors), and N1; . . . ; Nk are the
corresponding equivalence classes (consisting of totally non-adjacent vertices).

If G is a general (connected or disconnected) in�nite graph, then we have
([51]).

Proposition 2. (1Æ) Any in�nite graph G of �nite type k has the p �nite
spectrum (p = p(G) � k).

(2Æ) Every graph G with p �nite spectrum has a ,�nite type k, where k � 2p�1.
(3Æ) If G = g(N1; . . . ; Nk) is a graph of �nite type, then its number of non-

zero eigenvalues coincides with the number of non-zero eigenvalues of its canonical
image g, i.e. p(G) = p(g).

Proposition 3. If the graph G is of the type k, G = g(N1; . . . ; Nk), then its
non-zero eigenvalues are determined by � = �=a2, where � are the non-zero roots
of the characteristic equation

(�)
������
��=A b12 . . . b1k
. . . . . . . . . . . .
bk1 bk2 . . . ��=Ak

������ = 0
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Here B = [bij ] is the usual (0� 1) adjacency matrix of the canonical image g

of G wtd Ai =
X
j2Ni

a2j (i = 1; . . . ; k).

We notice that connected in�nite graphs are of our main interest, and remarks
concerning spectra of general (connected or disconnected) graphs bad to be included
only because some operations over connected in�nite graphs lead to disconnected
graphs.

2. Results

We consider separately some basic operations on in�nite graphs, and investi-
gate the �niteness of spectra of the graphs thus obtained.

(i) Ralabeling of vertices

Let G be any in�nite graph with a �xed labeling of its vertices (vertex vi has
the weight ai�1) and let M = fm1;m2; . . . g (mi { distinct) be an arbitrary not
necessarily ordered, in�nite subset of the set N .

If A(G) = [aij ] is the adjacency matrix of G with the constant a, and b is any

other constant (0 < b < 1), de�ne the new adjacency matrix ~A(G) = [~aij ] of G by

~aij =

�
bmi+mj�2; if i; j are adjacent
0; otherwise

:

Hence the vertex vi now has the new weight bmi�1 (i 2 N).

Then we say that the vertex set V (G) has been relabeled (including the change
of the constant a).

Theorem 1. If a graph G has a p �nite spectrum, then any relabeling of its
vertex set does not change the number of its non-zero eigenvalues.

Proof. One can see that all arguments from the three propositions above hold
for the relabeled graph too, where

~d =

 
1X

i;j=1

j~aij j2
!1=2

in Proposition 1, and Ai =
X

a2mj (j 2 Ni) in the last proposition (consult [5]

for the details).

But, since the relabeling of a graph does not change the type of a graph,
Proposition 2 (3Æ) completes the proof. �

Remark. This theorem implies that for any in�nite graph, the property \to
have a p-�nite spectrum" does not depend on the constant a or on the way of
labeling, so it is a pure spectral property of graphs.

In particular, any renumeration of weights of a graph with p-�nite spectrum
does not change the number p = p(G).
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(ii) Induced subgraphs of a graph

Consider next an arbitrary (connected or disconnected) in�nite induced sub-
graph of a connected graph G. We assume that the subgraph G0, considered has
the induced weights from the graph G.

Theorem 2. If a graph G has a p �nite spectrum, then any of its induced
subgraphs G0 has a y �nite spectrum, where 0 � q � p.

Proof. Since the canonical image g0 of the graph G0 is an induced subgraph
of the canonical image g of the graph G, Proposition 2 (3Æ) provides the proof.

It can be shown by examples, that both extreme cases q = 0 and q = p may
be obtained. �

(iii) Complement of a graph

If G is a connected in�nite graph, then the complement G of G is an in�nite
graph with the same vertices as G, and two vertices adjacent in G if and only if
they are, distinct and they are non-adjacent in G.

For the adjacency matrix A(G) of the complementary graph G we take the
complementary matrix of the matrix A(G) (with the zero diagonal).

Theorem 3. If a connected in�nite graph G has a �nite type k, i.e.
G = g(N1; . . . ; Nk), then its complementary graph G is in�nite (connected or dis-
connected) and has an in�nite spectrum.

Proof. If G = g(N1; . . . ; Nk) then, obviously, at least one among the charac-
teristic subsets N1; . . . ; Nk must be in�nite, so that the complementary graph G
possesses at least one complete in�nite induced subgraph. Hence the complemen-
tary graph G cannot be of a �nite type, and consequently it always has an in�nite
spectrum. �

It can be easily seen that a connected in�nite graph G has a complemen-
tary graph G of a �nite type (that is with a �nite spectrum) if and only if
G = h(M1; . . . ;Mi), where M1; . . . ;Mi are complete induced subgraphs of G and
h is a �nite graph with l vertices. Then G has an in�nite spectrum.

(iv) Union of two graphs

The union G1 [G2 of two in�nite connected graphs G1 and G2 is the graph
whose vertex set is the union of the disjoint sets V (G1), V (G2), and the set of edges
is the union of the corresponding sets of edges in G1 and G2.

In G1[G2 we always assume some �xed (but arbitrary) labeling of its vertices
by the set N , and the constant a is assumed to be the same in all G1, G2, G1 [G2.
So G1, G2 become subgraphs of G2[G2 with induced labeling from G1[G2 (these
induced subgraphs are denoted by G0

1 and G0
2). The union G1 [ G2 is always

disconnected.

Theorem 4. The union G = G1 [G2 of two connected graphs G1, G2 has a
�nite spectrum if and only if G1; G2 have such spectra.
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The numbers p = p(G), pi = p(Gi) (i = 1; 2) of the non-zero eigenvalues of
G, G1, G2 satis�es the relation p = p1 + p2.

Proof. If A(G), A(G0
1), A(G

0
2) are the adjacency matrices of graphsG, G1; G2,

respectively, then
A(G) = A(G0

1)�A(G0
2);

whence �(G) = �(G0
1) [ �(G0

2).

Then Theorems 1 and 2 complete the proof. �

(v) Complete product of two graphs

The complete product G1rG2 of two connected in�nite graphs G1; G2 is the
graph obtained from G1 [ G2 by joining every vertex from G1 with every vertex
from G2. Here, again, V (G1) \ V (G2) = ; is assumed.

We also suppose that in G1rG2 a �xed labeling of its vertices by the set of
natural numbers is given. Then G0

1; G
0
2 are the corresponding subgraphs of G1rG2

with the same vertices as G1; G2 and the induced labeling from G1rG2.

The complete product of two graphs is obviously always connected.

Theorem 5. The complete product G1rG2 of two connected graphs G1; G2

is a graph of a �nite type if and only if the graphs G1; G2 are such graphs.

If Gi has the type ki (i = 1; 2), then G1rG2 has type k = k1 + k2, and p
non-zero eigenvalues, where

(��) p1 + p2 � p � p1 + p1 + 2:

Proof. If the complete product G1rG2 of the graphs G1; G2 has a �nite type,
then the graphs G0

1; G
0
2, which are induced subgraphs of G1rG2 must also have a

�nite type, and Theorem 1 implies that the graphs G1; G2 have �nite type, too.

Conversely, let the graphs G1; G2 have �nite types k1; k2, respectively, that is

G1 = g(N 0

1; . . . ; N
0

k1); G2 = g2(N
00

1 ; . . . ; N
00

k2):

Then, as easily seen, the characteristic subsets of G1rG2 are exactly the sets
N 0

1; . . . ; N
0

k1
, N 00

1 ; . . . ; N
00

k2
, so that G1rG2 has the type k = k(G1rG2) = k1 + k2.

If now Bi is the (0{1) adjacency matrix of the �nite graph gi (i = 1; 2), then
the adjacency matrix of the �nite canonical image g of the graph G1rG2 has the
form

B =

�
B1 J
J 0 B2

�
;

where J is a k1 � k2 matrix whose all of entries are equal to 1.

Since then p(G) = rank (B), we can obtain the estimates (��) for p(G). �
(vi) The product of two graphs

The product G1�G2 of two in�nite graphs G1; G2 is the in�nite graph whose
vertices are the ordered pairs (x; y) of the vertices x 2 V (G1), y 2 V (G2), with two
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vertices (x1; y1), (x2; y2) adjacent if and only if x1 is adjacent to x2 in G1, and y1
is adjacent to y2 in G2.

Since vertices (x0; y) (y 2 G2) are not adjacent in G1 � G2, the product of
two graphs can be connected or disconnected.

Theorem 6. The product G1 � G2 of two connected in�nite graphs G1; G2

has a �nite spectrum if and only ijG1 and G2 do.

If Gi has the type ki (i = 1; 2), then G1 �G2 has the type k = k1 � k2.
Proof. We assume that Gi has the �nite type ki (i = 1; 2), that is

G1 = g1(N1; . . . ; Nk1); G2 = g2(M1; . . . ;Mk2);

and we prove that k(G1 �G2) = k1 � k2.
We will prove that the subsets Pij = Ni � Mj (i � k1; j � k2) are the

characteristic subsets of the graph G1 �G2.

Write u � v if in a graph G the vertices u; v belong to the same characteristic
subset of G (i.e. u; v are non-adjacent and have the same neighbors). Then for any
x; x1; x2 2 V (G1), y; y1; y2 2 V (G2) the following holds:

x1 � x2; y1 � y2 ) (x1; y1) � (x2; y2);1)

(x; y1) � (x; y2), y1 � y2;2)

(x1; y) � (x2; y), x1 � x2:3)

Next, let (x1; y1) � (x2; y2) (x1 6= x2; y1 6= y2). Then for every x 2 V (G1),
either x is adjacent to x1 and x2 or x is non-adjacent to both x1; x2, so that there
is at least one x 2 V (G1) adjacent to x1; x2, which implies that y1 � y2, and x1 is
non-adjacent to x2 (because x1 is non-adjacent to itself).

Similarly, we conclude that x1 � x2, whence we obtain

4) (x1; y1) � (x2; y2), x1 � x2; y1 � y2 (if x1 6= x2; y1 6= y2):

Relations 1){4) immediately imply that the subsets Pij are the characteristic
subsets of G1 �G2, thus k(G1 �G2) = k1 � k2.

Further, assume that at least one of the graphs G1; G2 has an in�nite spec-
trum. Then similarly one concludes that the products of the characteristic subsets
in G1; G2 are characteristic subsets of G1�G2, hence G1�G2 must have an in�nite
type. �

(vii) The sum of graphs

The sum G1 + G2 of two in�nite graphs G1G2 is the in�nite graph whose
vertices are the pairs (x; y) (x 2 V (G1); y 2 V (G2)), with two pairs (x1; y1); (x2; y2)
being adjacent if and only if x1 = x2 and y1 is adjacent to y2, or y1 = y2 and x1 is
adjacent to x2.

Obviously, G1 +G2 is connected if G1; G2 are so.
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For the sum of graphs we obtain a surprising results.

Theorem 7. If G1; G2 are connected in�nite graphs, then the sum G1 +G2

is a graph with an in�nite spectrum.

Proof. We prove that G1 + G2 is always a graph of an in�nite type, and
moreover every of its characteristic subsets consists of one element only.

Let two distinct vertices (x1; y1); (x2; y2) be equivalent in G1 + G2. Then if
(x; y) is adjacent to (x1; y1), it must be adjacent to (x2; y2) too.

We prove that in this case x1 = x2, y1 = y2, contradiction. Indeed, let for
instance x1 6= x2. Then there is at least one y0 2 V (G2) which is adjacent to
y1(y0 6= y2), or an y0 adjacent to y2(y0 6= y1).

In the �rst case, we would have that (x1; y0) is adjacent to (x1; y1), thus
(x1; y0) is adjacent to (x2; y2), which (because x1 6= x2) implies y0 = y2, a contra-
diction. Thus x1 = x2.

Similarly, y1 = y2, which is impossible.

Hence, in G1 +G2 the characteristic subsets must be singletons, so G1 +G2

always has an in�nite type, and in view of connectedeness, an in�nite spectrum. �

(viii) The line graph of a graph

If G is an arbitrary in�nite graph, then L(G), the line graph of G, is the
graph whose vertices are the edges of G, with two vertices being adjacent in L(G)
i� the corresponding edges of G have exactly one vertex in common.

L(G) is connected if G is so.

Next, if x 2 V (G) is an arbitrary vertex of G, let d(x) � +1 be its degree,
i.e. the number of vertices adjacent to x in G.

Theorem 8. The line graph L(G) of a connected in�nite graph G has, for
any labeling of its vertices, an in�nite spectrum.

Proof. Assume to the contrary, that L(G) has the �nite type m, i.e. L(G) =
g(N1; . . . ; Nm). Then at least one among subsets N i (say N1) must be in�nite,
which (because m > 1) implies that there is some f 2 Nj adjacent to all edges

h 2 N1.

Hence, there is a vertex x 2 G whose degree d(x) = +1. Thus, there is a
complete in�nite induced subgraph in L(G), which contradicts the assumption that
L(G) is of �nite type. �

(ix) The total graph of a graph

The total graph T (G) of an in�nite graph G is the graph whose vertices are
the vertices and the edges of the graph G, with two elements being adjacent in
T (G) i� they are adjacent or incident in G.

It is obviously connected, if G is so.

Theorem 9. The total graph T (G) of a connected in�nite graph G has, for
any Labeling of its vertices, an in�nite spectrum.
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Proof. Since the line graph L(G) of G is obviously a (relabeled) induced
subgraph of the total graph T (G), Theorems 2 and 8 provide the proof. �
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