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FINITENESS OF SPECTRA OF GRAPHS OBTAINED BY
SOME OPERATIONS ON INFINITE GRAPHS

Aleksandar Torgasev

Abstract. In this paper we consider some unary and binary operations on infinite graphs,
and we investigate when the spectrum of the resulting graph is finite.

In particular, we consider the induced subgraphs of an infinite graph, relabeling of its
vertices, the complementary graph, the union, Cartesian product, complete product and direct
sum of two infinite graphs, the line graph .and the total graph of a graph.

For some of these operations we find that the spectrum of the graph so obtained is always
infinite (direct sum, line and total graph). Among other things, we show that finiteness of the
spectrum of an infinite graph does not change by any relabeling of its vertices.

1. Preliminaries concerning spectra

In [4], we began investigating the spectra of infinite graphs restricting our-
selves to connected infinite simple graphs (undirected graphs without loops or mul-
tiple edges). But since in [3] M. Petrovi¢ considered infinite graphs without the
restriction of connectedness, we shall formulate the needed spectral results for gen-
eral (connected or disconnected) infinite graphs.

Throughout the paper, by a graph or an infinite graph, we always mean
an infinite denumerable (connected or disconnected) simple graph. Its vertex set
V(G) = {v1,v2,...} is indexed by natural numbers, and we often identify it with
the set N of natural numbers.

The adjacency matrix A(G) = A = [ay;] of a graph G is an infinite N x N
matrix defined by

s — atti=2, if i,j are adjacent
Y0, otherwise

where a is a fixed positive constant (O < a < 1).
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Hence the whole graph G is labeled (or weighted), so that vertex v; = i
(i € N) has the weight o'~ 1.

The matrix A = A(G) is a symmetric Hilbert-Schmidt matrix (or operator)
in a separable Hilbert space, because its absolute norm

n(4)? =Y |ayl?

i,j=1
is finite.
The spectrum o(G) of a graph G is defined to be the spectrum a o(A4) =

0(A(G)) of this Hilbert-Schmidt operator A(G). Then (see [4], or [5]) the following
holds:

PRrOPOSITION 1. The spectrum o(G) is always real, and it consists of the zero
and of a finite or infinite sequence of non-zero eigenvalues A1, A2,... JA\1 > Ao <
..), whose multiplicities are finite.

The sequence A\, — 0 (as n — 00), if it is infinite.

The spectral radius r(G) = ||A]] < d = av/2/(1 — a®)V/1 + a2, so that the
whole spectrum o(Q) lies in the interval [—d,d].

If G has a finite spectrum, i.e. 0(G) = {A1,...,Ap;0} with exactly p (not
necessarily distinct) non-zero eigenvalues A1, ..., A,, then we say that G has a p-
finite spectrum. In this case, the value A = 0 is an eigenvalue and its multiplicity
is infinite (codimension of the corresponding proper subspace is exactly p).

An infinite graph G has a finite spectrum if and only if it is of finite type (see
[4] or [5]),1i.e. G = g(Ny,...,Ny), where g is its canonical image (a finite graph with
k vertices, the quotient graph with respect to the following equivalence relation in
the set V(G) : x ~ y iff they have the same neighbors), and Ni,..., Nj are the
corresponding equivalence classes (consisting of totally non-adjacent vertices).

If G is a general (connected or disconnected) infinite graph, then we have
([51]).

PROPOSITION 2. (1°) Any infinite graph G of finite type k has the p finite
spectrum (p = p(G) < k).

(2°) Every graph G with p finite spectrum has a ,finite type k, where k < 2P—1.

(3°) If G = g(Ny, ..., Ny) is a graph of finite type, then its number of non-
zero eigenvalues coincides with the number of non-zero eigenvalues of its canonical
image g, i.e. p(G) = p(g).

PROPOSITION 3. If the graph G is of the type k, G = g(Ni, ..., Ny), then its

non-zero eigenvalues are determined by X = a/a?, where a are the mon-zero roots
of the characteristic equation

—CK/A b12 N blk
bkl ka .. —a/Ak
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Here B = [byj] is the usual (0 — 1) adjacency matriz of the canonical image g

of G wtd A; = Z a (i=1,...,k).
JEN;

We notice that connected infinite graphs are of our main interest, and remarks
concerning spectra of general (connected or disconnected) graphs bad to be included
only because some operations over connected infinite graphs lead to disconnected
graphs.

2. Results
We consider separately some basic operations on infinite graphs, and investi-
gate the finiteness of spectra of the graphs thus obtained.
(i) Ralabeling of vertices

Let G be any infinite graph with a fixed labeling of its vertices (vertex v; has
the weight a*~1) and let M = {my,ma,...} (m; — distinct) be an arbitrary not
necessarily ordered, infinite subset of the set V.

If A(G) = [asj] is the adjacency matrix of G with the constant a, and b is any
other constant (0 < b < 1), define the new adjacency matrix A(G) = [a;;] of G by

o bmitmi=2 if § 4 are adjacent
Y0, otherwise '

Hence the vertex v; now has the new weight 6™ ! (i € N).
Then we say that the vertex set V' (G) has been relabeled (including the change
of the constant a).

THEOREM 1. If a graph G has a p finite spectrum, then any relabeling of its
vertex set does mot change the number of its non-zero eigenvalues.

Proof. One can see that all arguments from the three propositions above hold
for the relabeled graph too, where

o 1/2
d= ( > |a,»j|2>

ij=1

in Proposition 1, and A; = Zani (j € N;) in the last proposition (consult [5]
for the details).

But, since the relabeling of a graph does not change the type of a graph,
Proposition 2 (3°) completes the proof. O

Remark. This theorem implies that for any infinite graph, the property “to
have a p-finite spectrum” does not depend on the constant a or on the way of
labeling, so it is a pure spectral property of graphs.

In particular, any renumeration of weights of a graph with p-finite spectrum
does not change the number p = p(G).
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(ii) Induced subgraphs of a graph
Consider next an arbitrary (connected or disconnected) infinite induced sub-

graph of a connected graph G. We assume that the subgraph Gy, considered has
the induced weights from the graph G.

THEOREM 2. If a graph G has a p finite spectrum, then any of its induced
subgraphs Gy has a y finite spectrum, where 0 < q < p.

Proof. Since the canonical image go of the graph Gy is an induced subgraph
of the canonical image g of the graph G, Proposition 2 (3°) provides the proof.

It can be shown by examples, that both extreme cases ¢ = 0 and ¢ = p may
be obtained. O

(iii) Complement of a graph

If G is a connected infinite graph, then the complement G of G is an infinite
graph with the same vertices as G, and two vertices adjacent in G if and only if
they are, distinct and they are non-adjacent in G.

For the adjacency matrix A(G) of the complementary graph G we take the
complementary matrix of the matrix A(G) (with the zero diagonal).

THEOREM 3. If a connected infinite graph G has a finite type k, i.e.
G = g(Ni,...,Ny), then its complementary graph G is infinite (connected or dis-
connected) and has an infinite spectrum.

Proof. If G = g(Ny, ..., Ni) then, obviously, at least one among the charac-
teristic subsets Ni,..., N, must be infinite, so that the complementary graph G
possesses at, least one complete infinite induced subgraph. Hence the complemen-
tary graph G cannot be of a finite type, and consequently it always has an infinite
spectrum. [

It can be easily seen that a connected infinite graph G has a complemen-
tary graph G of a finite type (that is with a finite spectrum) if and only if
G = h(My,...,M;), where My, ..., M; are complete induced subgraphs of G and
h is a finite graph with [ vertices. Then G has an infinite spectrum.

(iv) Union of two graphs
The union G; U G of two infinite connected graphs Gy and G5 is the graph

whose vertex set is the union of the disjoint sets V(G1), V(G2), and the set of edges
is the union of the corresponding sets of edges in G; and G5.

In G, UG, we always assume some fixed (but arbitrary) labeling of its vertices
by the set N, and the constant a is assumed to be the same in all Gy, G2, G1 UG>.
So G'1, G2 become subgraphs of G5 UGy with induced labeling from Gy UG» (these
induced subgraphs are denoted by GY and G9). The union G; U G» is always
disconnected.

THEOREM 4. The union G = G1 UG> of two connected graphs G1, G2 has a
finite spectrum if and only if G1, G2 have such spectra.
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The numbers p = p(GQ), p; = p(G;) (i = 1,2) of the non-zero eigenvalues of
G, Gy, G2 satisfies the relation p = py + ps.

Proof. If A(G), A(GY?), A(GY) are the adjacency matrices of graphs G, G1, Ga,
respectively, then
A(G) = A(GY) ® A(GY),
whence o(G) = o(G9) U o (GY).
Then Theorems 1 and 2 complete the proof. O

(v) Complete product of two graphs

The complete product G1 VG5 of two connected infinite graphs G, G> is the
graph obtained from G U G2 by joining every vertex from G with every vertex
from G». Here, again, V(G1) NV (G2) = 0 is assumed.

We also suppose that in G1 VGs a fixed labeling of its vertices by the set of
natural numbers is given. Then G?, GY are the corresponding subgraphs of G; VG2
with the same vertices as G1, G2 and the induced labeling from G, VG,.

The complete product of two graphs is obviously always connected.
THEOREM 5. The complete product GyV Gy of two connected graphs G, G2
is a graph of a finite type if and only if the graphs G1,G2 are such graphs.

If G; has the type k; (i = 1,2), then G1VG2 has type k = ki + ko, and p
non-zero eigenvalues, where

() p1+p2 <p<p+p +2

Proof. If the complete product G1 VG5 of the graphs Gy, G2 has a finite type,
then the graphs G, GY, which are induced subgraphs of G; V(s must also have a
finite type, and Theorem 1 implies that the graphs GG1, G2 have finite type, too.

Conversely, let the graphs G1, G2 have finite types ki, ko, respectively, that is
G1 :g(N{,,N]I“), GQZgQ(N{I,...,N]ICIQ).

Then, as easily seen, the characteristic subsets of G1 VG» are exactly the sets
Ni,...,Np . N{',..., N}, so that G1 VG2 has the type k = k(G1VGa) = ki + k2.

If now B; is the (0-1) adjacency matrix of the finite graph g; (i = 1,2), then
the adjacency matrix of the finite canonical image g of the graph G1 VG2 has the

form
B J
=% 5]
where J is a k; x ko matrix whose all of entries are equal to 1.
Since then p(G) = rank (B), we can obtain the estimates (xx) for p(G). O

(vi) The product of two graphs

The product G x G2 of two infinite graphs G, G» is the infinite graph whose
vertices are the ordered pairs (z,y) of the vertices z € V(G1), y € V(Gs), with two
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vertices (x1,y1), (z2,y2) adjacent if and only if x1 is adjacent to z2 in G4, and y;
is adjacent to yo in Gs.

Since vertices (xo,y) (y € G2) are not adjacent in G; x G, the product of
two graphs can be connected or disconnected.

THEOREM 6. The product G x G2 of two connected infinite graphs G1,G>
has a finite spectrum if and only i;G1 and G do.

If G; has the type k; (i = 1,2), then G1 x Gy has the type k = ky - ks.

Proof. We assume that G; has the finite type k; (i = 1,2), that is
Gl = gl(N17 .. 7Nk1)7 G2 = g2(M17 R 7Mk2)7

and we prove that k(G; x G2) = ky - ks.
We will prove that the subsets Pj; = N; x M; (i < ki;j < kp) are the
characteristic subsets of the graph G; x Gs.

Write u ~ v if in a graph G the vertices u, v belong to the same characteristic
subset of G (i.e. u,v are non-adjacent and have the same neighbors). Then for any
x,z1,22 € V(G1), y,y1,y2 € V(G2) the following holds:

1) Ty~ T2, Y1~ Y2 = (T1,41) ~ (T2,12);
2) (z,91) ~ (2,92) © y1 ~ Y2;
3) (z1,y) ~ (T2,y) & 21 ~ T2.

Next, let (z1,y1) ~ (2,92) (21 # T2,y1 # y2). Then for every x € V(G1),
either = is adjacent to 1 and x5 or z is non-adjacent to both x1, 22, so that there
is at least one z € V(G1) adjacent to x1,z2, which implies that y; ~ yo, and x; is
non-adjacent to 2 (because z is non-adjacent to itself).

Similarly, we conclude that x; ~ z2, whence we obtain
4) (T1,91) ~ (T2,¥2) © 21 ~ 22,y1 ~ Y2 (if 21 # 22,91 # ¥2).

Relations 1)—4) immediately imply that the subsets P;; are the characteristic
subsets of G1 X GQ, thus k‘(Gl X GQ) = kl . k‘Q.

Further, assume that at least one of the graphs GG;,G> has an infinite spec-
trum. Then similarly one concludes that the products of the characteristic subsets
in G1, G5 are characteristic subsets of G X G5, hence G; x G must have an infinite
type. O

(vii) The sum of graphs

The sum G; + G5 of two infinite graphs G G5 is the infinite graph whose
vertices are the pairs (z,y) (z € V(G1),y € V(G2)), with two pairs (z1,41), (22, y2)
being adjacent if and only if z; = x5 and y; is adjacent to ys, or y; = yo and z; is
adjacent to 2.

Obviously, G1 + G5 is connected if Gy, G2 are so.
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For the sum of graphs we obtain a surprising results.

THEOREM 7. If G1,G4 are connected infinite graphs, then the sum G1 + G2
is a graph with an infinite spectrum.

Proof. We prove that G; + G is always a graph of an infinite type, and
moreover every of its characteristic subsets consists of one element only.

Let two distinct vertices (z1,¥1), (z2,y2) be equivalent in G1 + G2. Then if
(z,y) is adjacent to (z1,y1), it must be adjacent to (z2,y2) too.

We prove that in this case 1 = 2, y1 = y2, contradiction. Indeed, let for
instance x1 # wo. Then there is at least one yo € V(G3) which is adjacent to
Y1(Yo # y2), or an yo adjacent to y2(yo # Y1)

In the first case, we would have that (z1,yo) is adjacent to (z1,y1), thus
(z1,¥0) is adjacent to (z2,y2), which (because z; # z2) implies yo = y2, a contra-
diction. Thus 1 = z».

Similarly, y; = y2, which is impossible.

Hence, in G; + G2 the characteristic subsets must be singletons, so G; + G»
always has an infinite type, and in view of connectedeness, an infinite spectrum. O

(viii) The line graph of a graph

If G is an arbitrary infinite graph, then L(G), the line graph of G, is the
graph whose vertices are the edges of G, with two vertices being adjacent in L(G)
iff the corresponding edges of G have exactly one vertex in common.

L(G) is connected if G is so.

Next, if z € V(G) is an arbitrary vertex of G, let d(z) < +oo be its degree,
i.e. the number of vertices adjacent to x in G.

THEOREM 8. The line graph L(G) of a connected infinite graph G has, for
any labeling of its vertices, an infinite spectrum.

Proof. Assume to the contrary, that L(G) has the finite type m, i.e. L(G) =
g(N1i,...,Ny). Then at least one among subsets N; (say N;) must be infinite,
which (because m > 1) implies that there is some f € N; adjacent to all edges
h € Nj.

Hence, there is a vertex # € G whose degree d(z) = 4+00. Thus, there is a
complete infinite induced subgraph in L(G), which contradicts the assumption that
L(Q) is of finite type. O

(ix) The total graph of a graph
The total graph T'(G) of an infinite graph G is the graph whose vertices are

the vertices and the edges of the graph G, with two elements being adjacent in
T(QG) iff they are adjacent or incident in G.

It is obviously connected, if G is so.

THEOREM 9. The total graph T(G) of a connected infinite graph G has, for
any Labeling of its vertices, an infinite spectrum.
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Proof. Since the line graph L(G) of G is obviously a (relabeled) induced

subgraph of the total graph T'(G), Theorems 2 and 8 provide the proof. O

1]
2]
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