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RANDOM LIFETIMES IN A TWO-COMPONENT SYSTEM

M. Luisa Targhetta

Abstract. Partly generalizing a model of Marshall and Olkin (1967) we consider the
\cumulative" and \ultimately fatal" e�ects of shocks on a two-component system, according to a
scheme hypothetically representative of physical or biological phenomenons.

1. Introduction

Marshall and Olkin have considered the following fatal shock model: the
components of a two-component system fail after receiving a shock which is always
fatal. Three independent Poisson processes govern the occurrence of the shocks
with parameters �1, �2 and �12 respectively. Events in the �rst process are shocks
only to the �rst component, events in the second process are shocks only to the
second component and events in the third process are shocks to both components.

In this paper we consider two models A and B which generalize the above
fatal shock model in the following ways :

A: the �rst component fails after receiving r(� 1) shocks governed by the same
Poisson process and analogously the second one after s (� 1) shocks;

B: the �rst component fails after receiving r(� 1) shocks cumulatively (not neces-
sarily belonging to the same Poisson process) and the second on after s(� 1) shocks
cumulatively.

In both cases the occurrence of the shocks is governed again by the above
three independent Poisson processes.

2. The distribution function for the model A

Let X and Y be the random lifetimes of the �rst and second component
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respectively; then, for r � s
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In the case r > s, F (x; y) is obtainable from (1) if we put there r; �1; x instead
of s; �2; y respectively and viceversa.

In particular, since the following relation holds
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it follows from (1) for r = s

F (x; y) = expf��1x� �2y � �12max(x; y)g
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F (x; y) as given in (1), is an absolutely continuous distribution for r 6= s,
while for r = s it has both an absolutely continuous and a singular part.

Precisely, we have for r = s

F (x; y) = �F a(x; y) + (1� �)F s(x; y); (4)

where
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and

F s(x; y) = f1=(1� �)g expf��max(x; y)g
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is a singular distribution.

3. The distribution function for the model B
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Let us introduce the following notation

p(n; 
; t) = exp(�
t)(
t)n=n! (5)

We have now for 1 � r � s and 0 � x � y
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where the second sum on the right hand side is equal to zero for r = 1.

To prove (6), note that for 1 � r � s and 0 � x � y:

if 0 � k � r�1 and r�k � s�h, that is 0 � h � s� r+k, (r�1�k) events
at most of the third process can occur in the time interval (0; x) and [(s� 1� h) {
fnumber of events in (0; x)g] events at most of this process can occur in the time
interval (x; y);

if 0 � k � r � 2 and r � k > s � h, that is s � r + k + 1 � h � s � 1,
(s� 1� h) events at most of the third process can occur in the time interval (0; x)
and [(s� 1� h) { fnumber of events in (0; x)g] events at most of this process can
occur in the time interval (x; y).

Similarly, we have for 1 � r � s and 0 � y � x
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where the second sum on the right hand side is equal to zero for r = 1.

Consequently, by combining (6) and (7) and making use of the formulas (2),
(5) we have for 1 � r � s

F (x; y) = expf � �1x� �2y � �12max(x; y)g
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where the second sum on the right hand side is equal to zero for r = 1, in which
case for s = 1, F (x; y) becomes the bivariate exponential distribution of Marshall
and Olkin.

In the case 1 � s � r the distribution F (x; y) is easily obtainable from (8) by
symmetry.

For r = s the distribution (8) has both an absolutely continuous and a singular
part; that is, the decomposition (4) holds with
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The moment generating function exists for both distributions (1) and (7), but
we not report here the tedious calculation of it.
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