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GRAPH EQUATIONS FOR LINE GRAPHS

AND n-th DISTANCE GRAPHS

Slobodan K. Simi�c

0. Introduction: In this paper we will investigate the graph equation

(1) L(G) = Dn(G);

L(G) being a line graph of G, while Dn(G) is the n-th distance graph of G, i.e.,
Dn(G) is a graph having the same vertex set as G with two vertices u and v being
adjacent in Dn(G) if the distance dG(u; v) between u and v in G equals n. Note
that there is a similar operation in literature, namely, the n-th path graph (see [1]
for a de�nition).

If n = 1, equation (1) becomes a classical one, i.e. L(G) = G, which was
solved in [2]. The case n = 2 is in fact, identical with the equation L(G) = Pn(G),
where n denotes the n-th path graph (3). Accordingly, we will assume throughout
this paper that n > 2.

All usual terminology in this paper is taken from (4). Here we quote some
unusual terminology. We say that graph is even (odd), if all its cycles have even
(odd) lengths. G hv1; . . . ; vmi denotes an induced subgraph of G obtained by taking
the vertices v1; . . . ; vm as its vertex set. If H is an induced subgraph of G, we write
H � G. In general, if H is any subgraph of G we write H � G. H is a distance-
preserving subgraph of G, if H , as a subgraph of G, satis�es dH(u; v) = dG(u; v),
for any pair u; v of vertices from H . The graph Cm(k1; . . . ; km) is obtained as
follows: we take a cycle Cm of length m (the vertices of the cycle are labeled from
1 to m) and append to the i-th vertex a path of length ki.

We also make some general remarks concerning the equations of the type

(2) F (G) = G;

where F is assumed to be the graph valued function which is additive with respect
to union (of graphs) and also preserves the connectedness of components. Taking
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G =
S
Gi (Gi is connected) as a solution to (2), we easily get that for some

permutation �F (Gi) = G�(i) holds for each i. Recalling the cycle structure of �,
we conclude that the set of components can be partitioned in such a way that each
part contains just the components which can be obtained one from each other using
the iterations of F . In other words, after the appropriate relabeling of components,
it follows that any part takes the form:

(3) G1; . . . ; Gi; . . . ; Gp;

where for each i = 1; . . . ; p Gi = F i�1(G1), while F
p(G1) = G1. The number of

parts clearly equals the number of cycles of �, while the number of graphs in each
part coincides with the length of the corresponding cycle. Assuming the labeling
from (3) we can say that

(4) G� =

p[
i=1

Gi

is also a solution to (2). Any solution of this type (which cannot be splitted into
some other ones) will be referred to as a fundamental solution. Namely, any other
solution can be represented as the union of the fundamental ones. So, in order to
solve the equations of the type (2), we only need to �nd its fundamental solutions.
Any of the graphs G1; . . . ; Gp appearing in (3) may be referred to as a generator
of the corresponding fundamental solution. The integer p is assumed to be the
period of any graph G1; . . . ; Gp, since it is the smallest integer such that for each
i = 1; . . . ; p, F p(Gi) = Gi holds. The above conclusions can be summarized in the
following proposition.

Proposition 1. Under the assumptions above, the equation (2) is equivalent
to the following family of equations

(5) F p(G) = G;

p being a natural number, while G is assumed to be connected.

Clearly, the same argument applies to the equations f(G) = g(G), if f or g
is invertible at least on the solution set of the equation.

1. Main considerations: From now on we shall assume that G denotes a
possible solution to (1). If so, suppose that G is a fundamental solution as well.
To �nd it, it is enough to �nd any of its generators, and their common period if
possible. By (m;n) we denote the greatest common divisor of m and n.

Lemma 1. The cycle Ck is a component of G if and only if k > 2n and
(k; n) = 1. Moreover, Ck is a fundamental solution as well.

Proof. Let d = (k; n). Then

Dn(Ck) =

8<
:
kK1 k < 2n
nK2 k = 2n
dCk=d k > 2n
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Now the proof of the Lemma immediately follows. �

Because of this lemma, from now on, we will ignore the cycles as components
of G.

Lemma 2. Every component of G which is not a cycle is unicyclic and odd.

Proof. Clearly, the number of points p(G) equals the number of edges g(G).
Thus, to prove the unicyclic part, it is suÆcient to show that G has no acyclic com-
ponents. Recalling that for any graph H we have �(L(H)) � �(H) � �(Dn(H)),
where � denotes the number of components of the corresponding graph, we obtain

(6) �(L(G)) = �(G) = Dn(G)):

Clearly, no component of G is trivial. If any, say Gi, is a tree, then for n even,
Dn(Gi) is disconnected, which contradicts (6); for n odd, Dn(Gi) is bipartite (and
a line graph as well), implying that Dn(Gi) is a path or a cycle which in turn
implies the same for some components of G. This is again impossible by (6); or the
assumptions.

Suppose now some component of G is unicyclic but even. Discussing the
parity of n4, we obtain contradictions analogous to those above. �

Lemma 3. The maximal vertex degree of G is less than 4.

Proof. Suppose the contrary and let v be a vertex of G such that deg v � 4.
Then K4 � L(G) and also K4 � Dn(G). Hence we can �nd in G four vertices
v1; . . . ; v4 at a mutual distance which is exactly n. Consequently, there is a subgraph
of G, say H , such that

H is distance preserving;(a)

H contains the verticesv1; v2; v3;(b)

H is critical with respect to (a) and (b):(c)

By a slight e�ort it follows that H must be one of the graphs H1 or H2 (see Fig.
1), depending on whether paths between v1, v2, v3 have any vertex in common.

Case 1: H1 appears in G. We now easily get

(7) d(vi; ui) = d(uj ; uk) + (n� g)=2 (i 6= j 6= k 6= i);
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where g(= d(u1; u2) + d(u2; u3) + d(u3; u1)) is, in fact, the girth of the component
that contains H1. Since G is odd, by Lemma 2, the same follows for n. Hence H1

may appear only for n odd. Next, consider v4 as well. Of course, it cannot be in
H1. Let u4 be a vertex of H1 such that d(v4; u4) is minimal. Clearly, d(v4; vi) =
d(v4; u4) + d(u4; vi) = n, implying that all d(u4; vi) are of the same parity. Since
d(vi; u4) + d(u4; vj) = n for some i, j we get a contradiction.

Case 2: H2 appears in G. Now, we have

(8) d(vi; u) = n=2

and this implies that n is even. Hence H2 may appear in G only if n is even. Next,
as above, consider v4 and note that it cannot be in H2. Let ux be a vertex of H2

such that d(v4; ux) is minimal. Now we easily get ux = u. Thus for all i = 1; . . . ; 4,
we have d(vt; u) = n=2. Since u cannot be isolated in Dn(G) by (6), there is a
vertex of G at distance n from u, and consequently, a vertex, say w, such that
d(u;w) = n=2 + 1. Without loss in generality, let w be adjacent to v4; also let w1,
w2, w3 be the neighbors of v1, v2, v3 such that d(u;wi) = n=2� 1 (see Fig. 2).

Of course, d(w;wi) � n. Assume �rst, d(w;wi) = n for all i. But then
Dn(G) hw;w1; w2; w3i = K1;3 (note that d(wi; wj) < n). Thus, say d(w;w3) = k,
where k < n. On the other hand, d(v3; v4) � d(v3; w3)+d(w3; w)+d(w;w4) = k+2,
and hence k � n� 2. Moreover, if v3 or v4 belongs to the shortest path between w
and w3, then d(v3; v4) < n. Now if k = n� 2, we can �nd in G two di�erent paths
between v3 and v4, each being of length n. But this implies that G contains an even
cycle, which contradicts Lemma 2. So assume k = n�1. But then, since d(w;wi) =
n� 1 must hold for all i, or just for one i, we have D(G) hw; v1; v2; v3; v4i = K5�x
or Dn(G) hw; v1; v2; v3i = K1;3, an obvious contradiction. �

The next lemma easily follows from the proof of the previous one.

Lemma 4. Any triangle of Dn(G) originates from some distance-preserving
subgraph of G which is (depending on the parity of n) equal either to H1 or H2 (see
Fig. 1 ).

In the next lemma we assume that Gu �Hv is a dot product of rooted graphs
obtained by identifying their roots.

Lemma 5. No component of G is equal to the graphs

Cm(k; 0; . . . ; 0) (k > 1); or(9)

C3 � Tu (Tu is a rooted tree):(10)
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Proof. The graphs (9) are eliminated by direct inspection. To eliminate the
graphs (10) observe �rst that Dn(C3 � Tu) = Dn(C3 � Tu � x), where x is an edge
of C nonincident with u (note, u is identi�ed with some vertex of C3). The rest of
the proof is as for Lemma 2. �

In order to prove the next lemma assume for a moment that any component
of G is di�erent from the graph Cm (k; 0; . . . ; 0) where k � 1. Namely, k = 0 is
already assumed, while for k = 1, the corresponding graph, as will be pointed later
on, is a generator of some fundamental solution with a period equal one. Hence,
for any component Gi of G, Dn(Gi), since being equal to L(Gj) for some j, has at
least two triangles.

Lemma 6. G has no triangles.

Proof. Suppose Gi is a component containing a triangle.

Case 1: n is odd. By Lemma 4, the graph H1 of Fig. 1 appears now in Gi as
a distance-preserving subgraph. Moreover, at least two copies of H1 must appear
in Gi each of them having at least a triangle in common. If there are just two
copies of H1 in Gi, then Dn(Gi) contains only two triangles which have an edge
in common, and this contradicts (10). If more than two copies of H1 appear in
Gi, then Dn(Gi) contains either K1;3 or C4 as an induced subgraph, an obvious
contradiction.

Case 2: n is even. By Lemma 4 again, graph H2 of Fig. 1 is now a distance-
preserving subgraph of Gi. Let Hv be a copy H2 with a central vertex v. Choose t
to be a vertex of the triangle of Gi, so that d(v; t) is minimal. If n=2 � d(v; t) � n�2
(or d(v; t) � 3n=2), then C4 (respectively K1;3) appears in Dn(Gi), a contradiction.
Note also that at most two subgraphs H 0

v and H 00

v may exist in Gi; otherwise C4

or K1;3 appears in Dn(Gi) again. Observe now two subgraphs Hv and Hw of Gi

(v 6= w) both equal to H2. Then Hvw (see Fig. 3) appears in G as a distance-
preserving subgraph.

Now d(v; w) � n, since otherwise K1;3 � Dn(Gi). If 1 � d(v; w) � n � 2, we get
contradictions as follows. If d(v; w) = 1, then 2(K4 � x) � Dn(Gi). The latter
implies that some component of G has at least two triangles. On the other hand,
if 2 � d(v; w) � n � 2, then C4 � Dn(Gi). So assume d(v; w) = n � 1 or n.
Also suppose s is a vertex of Hvw with degree (in Gi) equal to 3 (more than 3
is impossible by Lemma 3). If s belongs to v � vi or w � wi (i = 1; 2) paths of
Hvw, (note that s 6= v; w), then K1;3 � Dn(Gi). Otherwise, if s belongs to v � w
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paths of Hvw, then C4 � Dn(Gi) holds always except for the following possibility:
d(v; w) = n�1 and there exist two vertices s, t on the v�w path of Hvw such that
d(v; s) = d(t; w) = n=2 � 1, d(s; t) = 1 and the edge st belongs to the triangle of
Gi. But then 2(K4 � x) � Dn(Gi), a contradiction as earlier. Thus Dn(Gi) may
have at mast two triangles, which have an edge in common. The latter contradicts
(10). �

Lemma 7. Any vertex of G having degree equal to 3 belongs to a cycle.

Proof. Suppose the contrary and let Gi be a component of G that contradicts
the Lemma. Among the vertices of degree 3 not belonging to C (C is a unique cycle
of Gi) choose v so that d(v; C) is as large as possible. Next, let v1, v2, v3 be the
neighbors of v among which v is the closest to C. Clearly, v1, v2, v3 are mutually
nonadjacent in Dn(Gi) and belong to the same component of Dn(G) (note, Dn(Gi)
must be connected). Hence, there must exist in Dn(Gi) a vertex, say ux, adjscent
to at least one vertex among v1, v2, v3. If the position of ux is abserved in Gi,
it follows that ux must be adjacent to precisely two vertices among v1, v2, v3. If
ux is adjacent in Dn(Gi) to v3 and v1 (or v2), then, due to the maximality in the
choice of v, ux has no more neighbors in Dn(Gi). Next, if ux is adjacent in Dn(Gi)
to v1 and v2, then ux, again, has no more neighbors; otherwise if w is neighbor of
ux, then, to avoid the appearing of K1;3 or K4 � x in Dn(Gi) w must be adjacent,
besides ux, either to v1 or v2, which is impossible. It is also forbidden that two
vertices ux and uy are adjacent to the same pair of vertices among v1, v2, v3; C4 or
K4 � x appears again in Dn(Gi). Thus, Dn(Gi) contains C6 as a subgraph, which
is clearly a contradiction. �

We now focus our attention on the girth of all components which are not
cycles: By C we denote the unique cycle of the component under consideration.
If v and C are in the same component, then vc denotes the vertex of C which is
unique of course) for which d(v; C) is minimal: In the following lemmas we will
discuss the girth of the components of G.

Lemma 8. No component of G has a girth less than 2n� 3.

Proof. It is suÆcient to show that Dn(Gi) is disconnected whenever for some
component Gi its girth g(Gi) is less than 2n � 3. To end this, we �rst split the
vertex set of G into two disjoint classes V1 = fvj1 � d(v; C) � n � 1 � hg and
V2 = fvjv 2 C or d(v; C) � n � hg, where h = [g(Gi)=2]. Turning to Dn(Gi),
it must contain an edge, say x, such that x = v1v2 and v1 2 V1, v2 2 V2. If so,
d(v2; C) � n� h and also (v1)C 6= (v2)C : otherwise, deg v2 equals 1 in Dn(Gi) and
this fact deos not ensure the connectedness of Dn(Gi). So we can �nd on C two
vertices u1 and u2 such that d(v2; u1) = d(v2; u2) = n, which together with v1 and
v2 induce K1; 3 in Dn(Gi), providing a contradiction. �

In the following series of lemmas we investigate the components of G having
girth 2n� 1.

Lemma 9. Let Gi be a component of G with g(Gi) = 2n� 1. If u belongs to
C and degu = 3, there exists a vertex v of G such that d(u; v) = n and d(u; vc) =
[(n� 1)=2] or n� 1.
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Proof. Clearly, u cannot be isolated in Dn(Gi). Thus, for some vertex v,
we have d(u; v) = n. But then, in order to avoid K1;3 in Dn(Gi), we must have
d(u; vc) = [(n� 1)=2] or n� 1. �

In the next few lemmas, when there is no indication to the contrary, we
assume that n is odd.

Lemma 10: The graphs1 of Fig. 4 cannot be the induced subgraphs of G.

Proof. If the graphs above really appear in G, then C6 appears in Dn(G) as
an induced subgraph. The latter contradicts Lemma 2. �

Lemma 11. Let Gi be a component of G with g(Gi) = 2n � 1. Then there
is a pair of vertices in Gi not lying on C such that d(u; v) = n. In addition
d(uc; vc) = [(n� 1)=2] holds.

Proof. We �rst note that any pair of vertices originating from C is nonadjacent
in Dn(Gi). Since Dn(G1) cannot be bipartite, there must exist a pair of vertices u
and v, which satisfy the Lemma. If d(uc; vc) 6= (n � 1)=2, then K1;3 � Dn(Gi), a
contradiction. �

Lemma 12. If G is a component of G with g(G) = 2n� 1, then d(v; C) < n
for any vertex t of G.

Proof. Suppose the contrary and consider a vertex u such that d(u;C) � n.
Then d(u;C) = n since otherwise K1;3 � Dn(Gi). Let u, v1, v2, v3, v4 be the
vertices of Gi as shown in Fig. 5a.

1The labellings in Fig. 4 stand for the distances between corresponding vertices.
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By Lemma 11, all vertices of C except uc and possibly v1, v2, v3, v4 are of degree
2. Next, by Lemma 10, deg v1 or deg v4 is equal to 2, while, by Lemma 11, either
v1 or v4 is degree 3. If for some vertex w, d(w;C) > 0 and wc is equal to v2
or v3, then, by Lemma 10 or 11, d(w;C) < (n + 1)=2. Also, if n > 3, then
deg v2 = deg v3 = 3 cannot hold: otherwise K1;3 � Dn(Gi). If n = 3, it easily
follows that d(u;C) cannot be equal to n. So, assume deg v1 = 3, deg v4 = 2, while
deg v2 = 2 (or 3) and deg v3 = 3 (or 2). Now, let p; g; r; s be the vertices chosen
such that: d(p; C) = 1, pc = v1; d(q; C) = (n�1)=2, qc = uc; d(r; C) = d(s; C) = 0,
d(q; r) = d(q; s) = n. Clearly, p; q; r; s induce in Dn(Gi) a graph equal to K3 �K2

(see Fig. 5b) and also r and s have no more neighbors in Dn(Gi), as follows from
Lemmas 10 and 11. The detail from Fig. 5b cannot appear in a line graph of any
component of G under the restriction registered thus far. �

Lemma 13. All components of G having girth 2n � 1 have exactly 4n � 2
vertices.

Proof. Assume that G1; . . . ; Gp is a sequence of components for which

(11) Dn(Gi) = L(Gi+1) (i = 1; . . . ; p;Gp+1 = G1)

hold. Now it is easy to get that, if g(Gi) = 2n� 1 for some i, the same holds for
each i = 1; . . . ; p. Next, for each component Gi, let ai; bi and ci denote respectively
the number of vertices on the cycle, the number of vertices outside the cycle and
the number of vertices of degree 3 (or 1 as well). Also let di denote the number of
triangles in Dn(Gi). By a simple argument, we have:

(12) q(Dn(Gi) = 2ai + di; q(L(Gi+1)) = ai+1 + bi+1 + ci+1:

From (11) and (12), since ai = ai+1 (= 2n� 1) and ci+1 = d)i (= the number of
triangles on each component side of (11)), we get ai = bi+1. Thus, ai+ bi = 4n� 2
for each i = 1; . . . ; p. �

The next lemma is a direct consequence of Lemma 11.

Lemma 14. Let Gi be a component of G with g(Gi) = 2n � 1. If u is a
vertex of Gi such that d(u;C) = l > 0 and v is a vertex of C satisfying n� l� 1 �
d(v; uc) � n � 2, then deg v = 2, except possibly when d(v; uc) = (n � 1)=2 (or
n=2� 1 if n is even).

Lemma 15. Let Gi be a component of G with g(Gi) = 2n� 1. Suppose u and
v are the vertices of Gi such thus d(u; v) = n, provided none of them is on C. Also,
suppose w is a vertex of Gi not on C such that wc lies between uc and vc on the
shorter part of C. Then d(w;C) � (n� 3)=2.

Proof. If d(w; u) or d(w; v) is greater or equal to n, then K1;3 � Dn(Gi).
Therefore we have

(13) d(u; uc)+d(uc; wc)+d(wc; w) � n�1; d(v; vc)+d(vc; wc)+d(wc; w) � n�1

which implies d(w;wc) � (n� 2)=2. �
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Lemma 16. If Gj is a component of G with g(Gj) = 2n� 1, then whenever
n > 3, the vertices of degree 3 in Gj crre nonadjacent.

Proof. Suppose the contrary. Since L(Gj) = Dn(Gi) for some i, we have
K3 �K3 � Dn(Gi). The latter implies that in Gi there exists a vertex, say v, and
four other vertices at distance n from v. Using the same arguments as with Lemma
13 we get g(Gi) = 2n�1. If v is on the cycle C, then the four vertices mentioned are
out of it. As also required, suppose that two of them, say u and w, are at distance
n. If so, paths of length n between vertices v, u and v, w must be disjoint. Then
we easily get d(uc; wc) = (n+1)=2, a contradiction by Lemma 11. So, by using the
foregoing lemmas, it follows that Gi contains as an induced subgraph the graph of
Fig. 6. In addition we bave: d(v; u) = d(v; w) = n, d(vc; uc) = d(v; wc) = (n�1)=2,
d(vc; t1) = d(vc; t2) = n� 1. Now, by Lemma 14, there are no vertices of degree 3
between t1 and t3, t2 and t4 (shorter parts of C are assumed). According to the
same lemma some vertices closer to uc (or wc) depending on the length d(w;wc)
(d(u; uc)) are of degree 2. Next, assume there is a vertex x between uc and t5 (or
wc and t6) such that degx = 3. By Lemma 9, there must exist a vertex y such
that d(x; y) = n and d(u; y) = (n � 1)=2 or n� 1. If d(x; yc) = (n� 1)=2, then yc
falls between vc and wc. Since d(y; yc) = (n� 1)=2, this contradicts Lemma 15. If
d(x; yc) = n � 1, then deg yc = 2, as already observed. Thus, besides uc, vc, wc
only t1; . . . ; t6 could have degrees equal to 3.

For convenience, let l(x) = max
y2Yx

d(y; C), where Yx = fyjyc = xg (clearly, x is

a vertex of C).

We now make the following observations:

l(v) � (n� 1)=2(see Lemma 10);(14)

l(t1) or l(t5) = 0; l(t2) or l(t6) = 0; l(t3) or l(t4) = 0(15)

(see Lemma 11);

l(t3) + l(vc) + (t4) = (n� 1)=2(16)

(see (14) if l(t3) = l(t1), or (15) and Lemma 11 otherwise):

We now discuss conditions which ensure that t5 and t6 are not isolated in
Dn(Gi), i.e., we look for the vertices x and y such that d(t5; x) and d(t6; y) are
equal to n.
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Case 1: l(uc) � (n + 3)=2. Now, l(wc) � (n � 1)=2 and l(t1) = 0 by Lemma
10; l(t2) = l(t5) = l(tc) = 0 by Lemma 11; l(t3) + l(vc) + l(t4) � (n � 1)=2 is just
(16). Thus, since l(uc) � n� 1 (see Lemma 12) we get

(17)
X
x2C

l(x) � 2n� 2;

which contradicts Lemma 13.

Case 2: l(uc); l(wc) = (n � 1)=2. Now, l(t1) = l(t2) = l(t5) = l(t6) = 0, by
Lemma 11. Observing (16) as well, we get contradiction by (17).

Case 3: l(t1); l(t2) � 1. Now, by (15), l(t5) = l(t6) = 0; l(t1) + l(wc) �
(n� 1)=2, l(t2) + l(uc) � (n� 3)=2 by Lemma 11. If (16) is observed again, we get
the same contradiction as in the previous case.

Case 4: l(uc) � (n � 1)=2, l(t2) � 1. This possibility by itself contradicts
Lemma 11.

So t5 or t6 is isolated in Dn(Gi), a contradiction. �

Lemma 17. If n is odd and n > 3, no component of G has the girth equal to
2n� 1.

Proof. Assume Gi is a component of G for which g(Gi) = 2n � 1. Since
Dn(Gi) cannot be bipartite there are two vertices in Gi, say u and v, such that
d(u; v) = n, and m addition, neither u nor v belongs to C. Now, Gi contains as
an induced subgraph a graph exactly equal to the graph of Fig. 6 with one slight
modi�cation; namely, all vertices x for which xc = wc may be ignored; the rest is
the same. As in the previous lemma, we �rst conclude that there are no vertices
of degree 3 between t2 and t4 (the shorter part of C is assumed). Now suppose x
is a vertex of degree 3 lying on the shorter part of C between uc and vc. Since x
cannot be isolated in Dn(Gi) there is a vertex y in Gi such that d(x; y) = n. By
Lemma 9, d(x; yc) = (n � 1)=2 or n � 1. According to Lemmas 9, 11 and 16, any
position of yc gives a contradiction. Thus, all vertices between uc and vc (on the
shorter part of C) are of degree 2. So we have to examine whether any vertex of
degree 3 can exist between t1 and uc, or wc and vc (in both cases shorter parts of
C are assumed). Considering Lemmas 9 and 16 as well, the only possibility for the
existence of such vertices is that they appear in pairs so that their mutual distance
is n � 1. Hence, one is between t1 and t3, while the other is between wc and vc.
Denote these vertices by x and y. Using Lemma 11, we have:

l(x)+ d(x; uc)+ d(uc; vc)+ l(vc) � n� 1; l(y)+ d(y; vc)+ d(vc; uc)+ l(uc) � n� 1:

By adding these relations we get an obvious contradiction. Thus there are no
vertices of degree 3 in the corresponding parts of C.

Till now, we have proven that besides uc and vc, only wc, t1, t2, t4 possi-
bly have degrees equal to 3. The rest of the proof runs in the same way as the
corresponding part of the proof of the preceding lemma. �

The next lemma stems from the lemma above as a direct consequence.
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Lemma 18. If n = 3 and if G is a component of G with g(Gi) = 2n�1 (= 5),
then Gi = C5(1; 1; 1; 1; 1); Gi, as a generator of some fundamental solution, has a
period equal to 1.

We conclude consideration of the components of girth 2n� 1 by letting n be
even.

Lemma 19. If n is even, G has no components of girth 2n� 1.

Proof. Suppose the contrary and let Gi be a component having the minimal
number of vertices of degree 3. Since Dn(Gi) must have at least one triangle, using
Lemma 4, we get that the graph of Fig. 7 appears now inGi as an induced subgraph.
Also we must have d(v; vc) = n=2, d(v; x) = n, d(vc; uc) = d(vc; wc) = n=2� 1 and
d(vc; ti) = d(vc; t2)n� 1.

Using Lemma 14 (it holds for n even as well), it follows that all vertices
between t1 and uc, t2 and wc (in both cases shorter parts of C are assumed)
have degrees equal to 2. By Lemma 9, there exists a vertex, say y, such that
d(xc; y) = n while d(xc; yc) = n=2� 1 or n� 1. Since y is not on C we must have
d(xc; yc) = n=2 � 1, to avoid the forbidden parts of C. Also assume, xc 6= uc.
Then, since yc must be between vc and wc (on the shorter part of C and since
d(y; C) = n=2 + 1, we easily get K4 � x � Dn(Gi), which contradicts Lemma 6.
Moreover, by the same argument it follows that all vertices of C, except vc and
possibly uc, wc, t1, t2, t3, t4 are of degree 2. In particular, xc coincides with uc (or
wc) in which case d(x;C) = 1, or t3 (or t4) in which case d(x;C) = n=2� 1. The
following facts can be easily veri�ed:

l(uc) or l(wc) = 0;(18)

l(t3) or l(t4) � n=2� 1; implies l(uc) = 1(wc) = 0;(19)

l(t3) or l(t4) < n=2� 1:(20)

From (18)-(20), it follows that each vertex of Gi at distance n=2 from the
cycle contributes to the appearance of at most one triangle in Dn(Gi). On the
other hand Dn(Gi) = L(Gj), where Gj , as can be easily deduced, is a component
with the same girth as Gi. Due to the minimally restriction posed in the choice
of Gi, it follows that each vertex of degree 3 in G contributes to the appearance
of just one triangle of Dn(Gi). Thus, for each vertex x of C, either l(x) = 0
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or l(x) � n=2. Suppose now l(t3) � n=2. Then l(t1) = 0 (t3 and its appended
path is considered similarly as vc and path vc � v). Applying (19), it follows that,
besides l(t3) and l(vc), only l(t2) may be di�erent from 0. In this case we can easily
show, by constructing Dn(Gi), that C2n � Dn(Gi), which contradicts Lemma 2. If
l(uc) � n=2, then by arguments similar to those above; it follows that only uc and
vc can have degrees equal to 2. Thus, Gi consists of a cycle C and at most two
hanging paths of length not less than n=2 which meet the cycle C in vertices at
distances 1 or n=2�1. Now, except for n = 4, we could always �nd K1;3 � Dn(Gi).
By treating n = 4 separately, which is by no means a problem, we �nish the proof.
�

Lemma 20. The components of G which are not cycles and which have their
girth greater than 2n� 1 possibly exist if their girth is equal 3n� 2 or 3n.

Proof. Suppose Gi is a component of G with g(Gi) > 2n � 1 and g(Gi) 6=
3n� 2, 3n. Since Gi is not a cycle we can �nd four vertices v; v1; v2; v3 of Gi such
that d(v; vi) = n and d(vi; vj) 6= n (note, one vertex out of v1; v2; v3 is at distance
1 from C. The latter implies K1;3 � Dn(Gi), a contradiction. �

Lemma. 21. G has no components of girth 3n.

Proof. Suppose the contrary. Then, there exists a component, say Gi, equal
to C3n (k1; . . . ; k3n) where not all k's are equal to 0. If for some s ks > [n=2], then
we easily get C+6 � Dn(Gi), a contradiction by Lemma 2. Thus ks � [n=2] for any
s. Let U = fu1; . . . ; u3ng be the vertex set of C (us and us+1 are adjacent), while
V = fv1; . . . ; vmg are the remaining vertices of Gi. Then each triplet of vertices us,
us+n, us+2n forms a triangle inDn(Gi), denoted by Ts. Any vertex vt, if regarded in
Dn(Gi), is adjacent to just two vertices from U , each of them belonging to di�erent
triangles (note that n is odd, while ks � [n=2]). Vertices from V cannot be adjacent
in Dn(Gi), since otherwise we have K1;3 � Dn(Gi). Similarly, each vertex us may
be adjacent to at most one vertex vt. Next, let Dn(Gi) = L(Gj) for some j.
Since Gj is unicyclic and trianglefree, there must exist in Dn(Gi) a cycle of length
greater then 3. Then, in Gi, the following sequence of vertices (indices are ignored)
corresponds to the cycle mentioned: vuuvuu . . .v (the �rst and the last member of
the sequence correspond to the same vertex). If the number of occurrences of u in
pairs is less than n, then the vertices of some triangle Ts are not taken into account
in the sequence above. Therefore it follows that L(Gj) contains two disjoint cycles,
one of which is a triangle. In turn, this implies that Gj contains a vertex of degree
3 outside a cycle, a contradiction by Lemma 7. So we immediately get Gj = S,
where for brevity we put S = C3n (1; 0; 0; 1; 0; 0; . . . ; 1; 0; 0). Since Dn(Gi) = L(Gj)
implies Gj = S, then we must have Gi = S. Now, if n � 1 ( mod 3) (or n � 2 (
mod 3)), we get that some vertex from U has two neighbors in V (two vertices from
V are adjacent). Thus, n � 0 ( mod 3). If so, observe the vertices u1, un+1, u2n+1
chosen so that their degrees are 3. These vertices induce in Dn(Gi) an isolated
triangle, a contradiction. �

Next we will investigate only the components of G with the girth 3n� 2.
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Lemma 22. If Gi is a component of G with g(Gi) = 3n�2, then Gi = C3n�2

(k1; . . . ; k3n�2), where ks � 1.

Proof. Clearly, we only need to prove that ks � 1 for all s. If ks > 1 for some
s, then Dn(Gi) contains, among others, two cycles none of which is a triangle. This
is a contradiction since all components of G are unicyclic. �

Now, let H = fH jH = C3n�2 (k1; . . . ; k3n�2), where ks � 1g. If H 2 H, let
W (H) = fwjw is a vertex of H with degw = 3g. Next, let ':=L�1 ÆDn provided
that L�1 does not produce isolated vertices.

Lemma 23. Let H 2 H. Then '(H) 2 H, if the distance between any two
vertices from W (H) is not equal to n� 2.

Proof. We �rst note that d(w1; w2) 6= n � 2 for any w1; w2 2 W (H), since
otherwise Dn(Gi) has at least two cycles none of which is a triangle. On the other
hand, if d(w1; w2) 6= n� 2 for all vertex pairs from W (H), we have '(H) 2 H. �

Clearly,H 2 H generates a fundamental solution to (1), if and only if 'p(H) 2
H for every p � 0. To end this, we �rst examine the e�ect of changing the distance
between any two vertices from W (H), going from H to '(H).

Lemma 24. Suppose u and v are vertices of a cycle C of length 3n� 2 with
n odd. We then have dDn(C)(u; v) = f(dc(u; v)) where f is the following function:

f(x) =

8><
>:

3x=2; x is even and 1 � x � n� 1;
3(n� x)=2� 1; x is odd and 1 � x � n� 1;
3(n� x=2)� 2; x is even and n � x � 3(n� 1)=2;
3(x� n)=2 + 1; x is odd and n � x � 3(n� 1)=2:

Proof. Clearly, dDn(C)(u; v) = min(p; 3n � 2 � p), where p is the smallest
nonnegative integer such that pn = q(3n� 2) + x (q � 0) and x = dc(u; v). Thus,
we have p = min(3q � (2q � x)=n)). Since r = (2q � x)=n is an integer, we get
q = (nr + x)=2, implying p = min(3(nr + x)=2� r), where r is an integer not less
than �x=n. Next, if x is even, then r = 0, while for x being odd r = �1, depending
on the ratio of x and n. So (21) easily follows. �

Assume now H 2 H implies '(H) 2 H. If so, de�ne a mapping from W (H)
onto W ('(H)) as follows: to each w 2 W (H), there corresponds a w0 2 W ('(H))
such that whenever a hanging edge at w is deleted (which sets H to H�), then a
hanging edge at w0, if deleted, gives '(H�).

Lemma 25. Under the above assumptions, if w1; w2 2 W (H), then

(22) d'(H)(w1; w2) = f(dH(w1; w2));

where f is given by (21).

Proof. Without loss in generality, let W (H) = fw1; w2g. To make it easier,
observe Fig. 8, where d(w1; as) = d(w2; bs) = n� 1 (s = 1; 2), while c2, c2 and d1,
d2 replace the a0s and b0s in order to avoid the e�ects of permuting their indices.
Following Fig. 8, we get: d'(H)(w1; w2) = dDn(H)(csds) (s = 1; 2), while on the
other hand dDn(H)(cs; ds) = f(dH(at; bt)) = f(dH(w1; w2)) (s; t = 1; 2). Now the
Lemma easily follows. �
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2. Main result. Collecting all the conclusions proven thus far in the lemmas,
we arrive at our main result.

Theorem. The graph equation L(G) = Dn(G) has, as the generators of the
fundamental solutions, just the following graphs:

1Æ H = Ck, for k > 2n and (k; n) = 1; the period of this graph is 1.

2Æ H = C5(1; 1; 1; 1; 1) only for n = 3; the period of this graph is 1.

3Æ H = C3n�2(k1; . . . ; k3n�2) provided that:

a) n is odd ;

b) ki � 1 for all i = 1; . . . ; 3n� 2;

c) if ui; uj (ui 6= uj) are the vertices of the cycle for which ki; kj 6= 0, then
d(ui; uj) 62 ffp(n � 2)jp � 0g, where f is in fact the permutation given by (21), or
in other words d(ui; uj) does not belong to the cycle of f that contains n� 2.

The period of H in the case 3 is an open question.

Remark. It follows from the theorem above that we can �nd a general solution
for any particular n. The only inconvenience is that for an arbitrary n we don't
know the period of some generator, i.e., we don't know in advance the number of
components of some fundamental solution.

In order to illustrate this theorem, we deduce the solution for n = 3. In this
case the general solution consists of the components of the following three types:
Ck (k > 6 and k 6� 0 ( mod 3)), C5 (1; 1; 1; 1; 1) and C7 (1; 0; 0; 0; 0; 0; 0).
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