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ANOTHER NOTE ON CAUCHY-REGULAR FUNCTIONS

Jirg Ratz

In [11] and [12], R. F. Snipes points out that there is a class of mappings
strictly between the classes of continuous and of uniformly continuous mappings
with very interesting properties and important applications. In 1977 we indepen-
dently found essentially the same results. It is the purpose of this note to present
some complements to [12].

Motivated by the properties of Cauchy-regular functions stated in sections 1
and 3 of [12], we call a mapping f from a uniform space (X, {l) into a uniform space
(Y,%8) Cauchy-regular or a Cauchy morphism if it preserves Cauchy filterbases. A
mapping f is called a Cauchy isomorphism if it is bijective and if both f and f~!
are Cauchy morphisms.

1. Cauchy morphisms and Cauchy nets
We are interested in three constructions connecting filterbases and nets:
(i) If (xz5)sep, sometimes abbreviated by (zs), is a net in the set X, i.e.,
x5 € X for every 0 € D, then the sets Bs:={(z4; @ € D, < a} form the so-called
corresponding filterbase of (xg).

(ii) Let ,£ be a filterbase on the set X and D:={(z, B);x € B € £}. Together
with the relation < defined by

(w1, B1), (x2,B2) € D; (x1,B1) < (22, B2):¢> B1 D By,

(D, <) becomes a directed set. The net (y5)sep with ys = x for § = (¢, B) € D is
said to be the canonical net of £. It turns out that £ is the corresponding filterbase
of its canonical net (cf. [7, p. 83, Problem L, (f), (ii)] or [14, p. 41, Example 6]. In
general, < is not antisymmetric. For a modified procedure ensuring antisymmetry
cf. [4, p. 171, 172].
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(iii) If £ is a filterbase on the set X and, for every B € £, an element zp is
chosen arbitrarily from B, then the net (zp)pee with the directed domain (£, D)
is called a net associated with £.

For uniform spaces (X, 1) Cauchy nets make sense ([7, p. 190] or [14, p. 217,
Problem 14]), and we get

(1)  The net (z5) in X is Cauchy if and only if its corresponding filterbase
is Cauchy,

and from (1) and (ii) furthermore

(2) The filterbase £ on X is Cauchy if and only if its canonical net is Cauchy.

It seems now quite natural to ask whether Cauchy filterbases could be char-
acterized also in terms of their associated nets. (For similar statements concerning
convergent filterbases and nets or ultra-filterbases and universal nets see [13, p.
221-222], or [14, p. 41, Example 5], or [1].)

LEMMA 1. Let X be a non-empty set, (Y,B) a uniform space, f : X =Y, and
£ a filterbase on X with no smallest member. If, for every net (xg)pege associated
with £, (fxg)Beg is a Cauchy net Y, then f(£) is a Cauchy filterbase on Y.

Proof. Assume that f(£) is not a Cauchy filterbase. Then there exists a
connector Vg € B such that f(B) x f(B) ¢ V, for every B € £, i.e., such that
there exist zp, 255 € f(B) with the property

(3) (2b,25) & Vo for every B € L.
Let V7 be a connector in B satisfying
(4) VioVi C V.

Since £ has no smallest member, every B in £ has at least two proper successors
in £ with respect to the relation D. By [13, p. 217, Theorem 1] there are cofinal
subsets £1, £ of £ satisfying £, N Ls =0, £, ULs = £. For each B in £ we define
yB by

(5) YB-—ZB if B¢ £1, yB::ZSB if Be L.

If zp € B such that f(zp) = zp for every B € £7, then (z5)pee is a Cauchy net
by hypothesis, hence there exists a By € £ such that

(6) By,Bs € £ By D Bi,By D By imply (2B,,28,) € V4.

If wg € B such that f(wg) = yp for every B € £17, then (yg)pce is a Cauchy net
for the same reason, hence there exists a C € £ such that

(7) Bl,B2 € 2, CD Bl,C D B2 1mply (yBlasz) € Vl.

Since £; and £5 are cofinal in £ there exist a By € £ and a By € £5 such that
BoNC D By, BoNC D Bs. From (6), (7) we get (2B,,2B,) € V1, (¥B,,yB,) € V1 i.e.,
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by virtue of (5) (2B,,2B,) € V1, i.e., by (4) (2B,,2p,) € Vi o Vi C Vj, contradicting
(3).

COROLLARY 2. Let £ be a filterbase on the uniform space (X,). Then: a)
If £ is Cauchy, so is any net associated with £. b) If £ has a smallest member,
the converse of a) is false. c¢) If £ has no smallest member, then £ is a Cauchy
filterbase if and only if every net associated with £ is a Cauchy net.

Proof. a) is well known (cf. [14, p. 217, Problem 15]). b) For the usual
uniformity on R, the filterbase £ consisting of the interval [—1, 1] only is not Cauchy.
On the other hand, any net the domain of which has a last element is trivially
eventually constant, hence Cauchy. c) The “only if” part follows from a), and the
“if” part from Lemma 1 when we put X =Y, 4 =9, and f =id,.

THEOREM 3. A mapping f from a uniform space (X,4) into a uniform space
(Y,B) is a Cauchy morphism if and only if it preserves Cauchy nets.

Proof. 1) Let f be a Cauchy morphism and (zs) a Cauchy net in X. By (1),
the corresponding filterbase £ of (xs) is Cauchy, hence f(£) is Cauchy. Since f(£)
is the corresponding filterbase of the net (f(zs)), the latter is Cauchy by (1). Thus
f preserves Cauchy nets. — 2) Let f be Cauchy net preserving and £ a Cauchy
filterbase on X. We may express this information about in two ways, namely (a)
by its associated nets, or (b) by its canonical net, and, accordingly, we get two
different proofs which we now sketch.

(a) Case 1: £ have no smallest member. Let (zp)pee be a net associated
with £. By Corollary 2a), () is a Cauchy net in X, hence (f(zpg)) is a Cauchy
net in Y. By virtue of Lemma 1, f(£) is a Cauchy filterbase on Y. So f is a
Cauchy morphism. — Case 2: £ possess a smallest member By. If f(£) were not
Cauchy, there would exist V5 € B and z1,z2 € By such that (f(zy), f(z2)) & Vb.
For z,:=z; (n odd), z,:=x2 (n even) (z,)nen becomes a Cauchy net since £ is
Cauchy. But for every odd n, (f(z), f(zn+1)) € Vo, hence (f(z,)) is not Cauchy,
contradicting the hypothesis.

(b) By (2), the canonical net (y5)sep of £ is Cauchy, therefore (f(ys)) is
Cauchy. We show now that the canonical net (w,),ec of f(£) is Cauchy. (If
(wy) were a subnet of (f(ys)), the proof would be already complete; but in general
(wy) is not a subnet of (f(ys)), thus some more effort is necessary). For any
V' € B there exists a dp:= (zg, By) € D such that §;,02D; dp < 1, dg < Ja, imply
(f(ys,), f(ysy)) € V. Let vo:=(f(z0), f(Bo)). We have that zo € By € £ implies
F(x0) € F(Bo) € £(2), e 70 € Ci={(z F(B)); 2 € f(B) € f(S)}. Let 11,7 € C
be such that 70 < 71,7% < 72 say 1 = (21, f(B1)) and 72 = (29, f(B2)). Tt
follows that 21 € f(B1) C f(By), 22 € f(B2) C f(Bo), and there exist 1,22 € By
with the property f(z1) = 21, f(z2) = z2. For §1:=(z1, By) and d2:=(z2, By)
we obtain 01,0 € D; dg < 81, dp < b9, ie., (f(ys,), f(ys,)) € V, and by (ii) we
get (1, wyy) = (21, 72) = (f(21), F(z2)) = (F(s,)s F(y5.)) € V. Hence (w,) is a
Cauchy net, and by (2) we have that f(£) is a Cauchy filterbase; thus f is a Cauchy
morphism.
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2. Miscellaneous Remarks

Remark 1. There is a notion of boundedness of subsets of uniform spaces for
which we have

(8) compact 4= precompact 4= bounded

[14, p. 219, Problems 203, 205, 206]. Uniformly continuous mappings preserve
bounded sets, continuous mappings preserve compact sets, and Cauchy morphisms
preserve precompact sets; the latter follows from [12, p. 19, Theorem 3] and [14, p.
217, Problem 9], or via a filter-theoretic characterization of precompactness [14, p.
215, Theorem 11.3.6; p. 216, Problem 5]. Thus we have a satisfactory corresponence
between (8) and

uniformly continuous 4= Cauchy morphism 4= continuous.

Remark 2. Completeness is preserved under Cauchy isomorphisms. The steps
of a simple proof are: £ Cauchy filterbase on Y, f~1(£') Cauchy on X, f~1(£')
convergent in X, ff1(£') convergent in Y. On the other hand, bijective mappings
f: X = Y with f uniformly continuous and f~! continuous need not preserve
completeness as the example f: R =] — 1,1, f(z):=z/(1+ |z|) (z € R) shows (R
and | — 1, 1] equipped with the usual uniformities).

Remark 3. By CFB(4), and C'N (U) we denote the set of all Cauchy filterbases
on the uniform space (X, ) and the set of all Cauchy nets in the uniform space
(X, i), respectively. If {; and s are uniformities on X, Theorem 3 applied for
f =id x yields

CFB(ﬂl) C CFB(ﬂQ) p=2 CN(ﬂl) C C’N(ﬂQ)

In the latter case, 4; and iy are called Cauchy equivalent [14, p. 217, Problem
17]. For this and further aspects of the comparison of uniformities cf. also [5, p.
53, Problem 3], [8, p. 168], [10, p. 103, Beispiel 1].

Remark 4. [12, p. 21, Theorem 5]. The fact that a Cauchy morphism f :
D — Y has an extension f : D — Y which is also a Cauchy morphism holds also
for non-Hausdorff spaces (Y,%B), but f is no longer uniquely determined. On the
other hand, simple examples show that completeness of Y and denseness of D in
D are essential for the extension theorem.

3. Cauchy morphisms in connection with topological groups

The left and right uniformities of the topological group (X, -) are denoted by
M, and M, respectively.

Remark 5. The group operation (z1,z2) — x; - 2 of any topological group
(X,-) is a Cauchy morphism from (X,9%) x (X,9) into (X,97) and also from
(X,9m,) x (X,9M,) into (X,9M,) (cf. [2, §3, Proposition 6] or [14, p. 256, Lemma
12.2.4]). It is uniformly continuous if and only if I = M, [2, §3, Exercise 3].
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Therefore the possible difficulties in the completion problem of topological groups
are never caused by the group operation.

Remark 6. For uniform continuity of the inversion mapping © — z~' with
respect to different uniformities cf. [14, p. 258, Problem 105]. It is an 994-90;-
Cauchy morphism (9t,-91,.-Cauchy morphism) if and only if 9%, and 91, are
Cauchy equivalent [14, p. 258, Problem 2]. Therefore this last condition is crucial
for the existence of a group completion for (X, ;) and for (X, M) [2, §3, Théoreme
1]. For a famous example where the condition is violated see [14, p. 255, Example

Remark 7. Every continuous homomorphism from a topological group (X, -)
into a topological group (Y, -) is uniformly continuous with respect to the left (right)
uniformities [14, p. 252, Theorem 12.2.2], hence a Cauchy morphism. But id, :
(X,90) — (X,9,) is a Cauchy morphism if and only CFB(9;) C CFB(IM,.).

Remark 8. If (X +1,-), (X3,-), (Y,-) are groups, a mapping f : X; x Xo = Y
is called a bimorphism if f(xy - x|, x2) = f(z1,22) - f(2],22) and f(z1, 22 - x}) =
f(z1za) - f(x1,25) hold for all z12) € X1; z2,25 € X5, It is easily seen that any
two elements of f(X; x X3) must then commute: Note that f(X; x X3) need
not be a subgroup of Y [9, p. 194]. Nevertheless, for the sake of simplicity and
because we still cover most important examples, we assume from now on that Y
is commutative, and we write + instead of - in Y. Accordingly, a bimorphism is a
biadditive mapping.

THEOREM 4. If (X1,-), (Xa,-), (Y,4) are topological groups, Y commutative,
with right uniformities My, My, N, respectively, then every continuous biadditive
mapping [ : X1 X Xo =Y is a Cauchy morphism with respect to My, My, N.

For commutative and separated X; and X, see [2, §6 Théoreme 1]. That
proof may be adapted to our more general situation.

Remark 9. Theorem 4 and Remark 4 open the way to the completions of
topological rings, topological modules, and inner product spaces, in general in the
absence of uniform continuity (cf. [2, §6, Nos. 5 and 6] and [12, p. 24/25]). Remark
5 and Theorem 4 also have obvious consequences for combining Cauchy morphisms
with Cauchy morphisms by algebraic operations (cf. [12, end of section 1, and p.
23, Proposition 8]).

COROLLARY 5. If, in the situation of Theorem 4, A; and Ay are precompact
subsets of X1 and X5, respectively, then the restriction of f to Ay X As is uniformly
continuous (for a special case cf. [3, §1, NO. 4, Remarque 2]).

This follows from A; x As precompact [14, p. 227, Problem 122], Theorem
4, the restriction property of Cauchy morphisms, and [12, p. 19, Theorem 3].

COROLLARY 6. Let (X,-), (Y,+) be topological groups with right uniformities
M, N, respectively, and let (Y, +) be commutative. Let ¢ :' Y — Y, defined by
o(y) =2y (y € Y), be bijective and ¢~' continuous. If ¢ : X — Y is continuous
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and satisfies the functional equations

(Q) q(zy - x2) + gz - 25 ") = 2q(21) + 2q(22) (21,25 € X),
(€) q(zy - w2 - w3) = q(2 -1 - 23) (21,72, 23 € X),
then g is a Cauchy morphism.

Proof. By [bf 6, p. 193, Theorem 3], the mapping f : X x X — Y defined by
(P) flxr,e2) = o7 g - w2) — (1) — g(22)] (21,72 € X)

is biadditive. From the hypotheses we conclude that f is continuous, hence a
Cauchy motphism by Theorem 4. From (Q) and the hypothesis on ¢ we get g(z%) =
4q(z), i.e.

(D) flz,z) = q(x) for every x € X.

Since Cauchy morphisms behave nicely under composition and the formation of
mappings into product spaces [12, p. 23 Proposition 8], ¢ is a Cauchy morphism.

Remark 10. Condition (C) is trivially satisfied in the case of a commutative
group (X,-). (C) is also necessary for f and ¢ to be connected by the formulae
(P) and (D) (cf. [6]). A solution of (Q) is called a quadratic functional, and now
Corollary 6 and Remark 4 provide an extension theorem for continuous quadratic
functionals.
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