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1-FACTORIZATION OF THE COMPOSITION

OF REGULAR GRAPHS

Toma�z Pisanski, John Shawe-Taylor, Bojan Mohar

Abstract. 1-factorability of the composition of graphs is studied. The followings suÆcient
conditions are proved: G[H] is 1-factorable if G and H are regular and at least one of the following
holds: (i) Graphs G and H both contain a 1-factor, (ii) G is 1-factorable (iii) H is 1-factorable.
It is also shown that the tensor product G 
 H is 1-factorable, if at least one of two graphs is
1-factorable. This result in turn implies that the strong tensor product G
0

H is 1-factorable, if
G is 1-factorable.

1.0 Introduction. The source of inspiration for this paper is rightfully
Kotzig's [3]. His simple suÆcient conditions for the cartesian product of graphs to
be 1-factorable naturally raise the question of when other well known products of
graphs are 1-factorable.

In this paper we give analogous results for the composition of graphs and par-
tial results for the tensor and strong tensor products, which extend those announced
in [5].

We will leave the basic de�nitions of graph theory to any standard textbook,
for example Harary's Graph Theory [2], and will limit ourselves to de�ning only
lesser known terms and those which may cause confusion.

2.0 De�nitions. If u and v are adjacent vertices of a graph, then we write
u � v and denote with uv the edge joining them.

For a graph G, let V (G) denote the vertex set of G and E(G) denote its edge
set.

The composition, also known as the lexicographical product, of graphs G and
H is de�ned as the graph G[H ] with the vertex set V (G[H ]) = V (G)� V (H) and
the edge set E(G[H ]) = f(u; v)(u0; v0): either (u = u0 and v � v0) or u � u0g.
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The tensor product of graphs G and H is de�ned as the graph G 
H with
vertex set V (G)� V (H) and the edge set

E(G
H) = f(u; v)(u0; v0) : u � u0 and v � v0g

If by deg(v) we denote the degree of a vertex v, then for (u; v) a vertex in
G 
 H we have deg((u; v) = deg(u) � deg(v). Thus if G and H are regular, so is
G
H .

The graph Gfmg is de�ned as G
Km, where Km is the complete graph on
m vertices.

If G and H have the same vertex set V = V (G) = V (H), and disjoint edge
sets, E(G) \ E(H) = ;, then the sum G 
 H is the graph having the vertex set
V (G�E(H) = V and the edge set E(G�H) = E(G) [ E(H).

Several authors have de�ned G(m) as G[mK1] [1,4]. Mohar and Pisanski
studied 1-factorability of G(m) in [4]. Here we only note that G(m) and Gfmg are
connected by the relation G(m) = Gfmg �mG.

The graph G[H ] can be expressed as the sum of the standard cartesian prod-
uct G�H and the graph GfjV (H)jg:

G[H ] = (G�H)�GfjV (H)jg:

If G is the sum of a series of graphs:

G = F1C � F2 � � � � � Fk;

we can readily verify the following results:

G = F1fmg � F2fmg � � � � � Fkfmg;

G
H = (F1 
H)� (F2 
H)� � � � � (Fk 
H):

If each graph Fi is d-factorable, it is also clear that G is d-factorable, as it can be
written as the sum of all the d-factors of the Fi.

The strong tensor product G
0 H is de�ned on the vertex set V (G)� V (H)
as

G
0 H = (G
H)� (G� fv1g [G� fv2g [ � � � [G� fvmg);

where V (H) = fv1; v2; . . . ; vmg:

3.0 Known results. We �rst restate in our own words Kotzig's result for
the cartesian product of regular graphs.

3.1 Theorem (Kotzig 1979, [3]): If G and H are two regular graphs for which

at least one of the following conditions holds:

(i) Both G and H contain 1-factor,

(ii) G is 1-factorable,
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(iii) H is 1-factorable,

then the cartesian product G�H 1-factorable.

Kotzig also showed that these conditions, though being suÆcient are not
necessary. In particular he showed that for any cubic graph G and any cycle
of length n; n greater than three, the cartesian product G � Cn is 1-factorable [3,
Theorem 7]. We shall in turn use this to show that our conditions for 1-factorability
of G[H ] are also not necessary.

Finally we shall require the 1-factorability of K2n, the complete graph on an
even number of vertices, and K�onig's well known theorem that a regular bipartite
graph is 1-factorable. These theorems can be found in Harar 's book [2 Theorems
9.1, 9.2].

4.0 Lemma and main theorems. We �st of all state a lemma concerning
the graph G(2m).

4.1 Lemma. If graph G is regular, then Gf2mg is 1-factorable.

Proof. In section 3 we mentioned that K2m is 1-factorable. Using this result,
let graphs F1; F2; . . . ; F2m�1 be 1-factors of K2m, which together make up a 1-
factorisation: K2m = F1 � F2 � � � � � F2m�1.

Now we have

Gf2mg = G
K2m = (G
 F1)� (G
 F2)� � � � � (G
 F2m�1)

and since Fi = mK2 (1 < i < 2m), it follows that the tensor product G � F can
be written as G
 Fi = m(G
K2) = mGf2g.

But the graph Gf2g is bipartite, since it has vertices on two levels G � f1g
and G�f2g, and edges pass only between these two disjoint sets. It is also reregular
since G is regular, and thus it is 1-factorable (cf. Section 3).

Since the tensor product G 
 Fi is mGf2g, it is also 1-factorable for each i.
This in turn means that the sum

(G
 F1)� (G
 F2)� � � � � (G
 F2n�1) = Gf2mg

is 1-factorable.

The main theorem follows readily:

4.2 Theorem. If G and H are two regular graphs for which at least one of

the following holds:

(i) both graphs G and H contain 1-factor,

(ii) G is 1-factorable,

(iii) H is 1 factorable,

then the composition G[H ] of G and H is 1-factorable.

Proof. We use the identity G[H ] = G�H �GfjV (H)jg.

By Theorem 3.1 G�H is 1-factorable in cases (i), (ii) and (iii).
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In cases (i) and (iii) H has at least one 1-factor and thus the number of
vertices V (H) is even. This means that GfjV (H)jg is 1-factorable by Lemma 4.1
and thus G[H ] is 1-factorable.

There remains only case (ii) when G is 1-factorable. Let G = F1�F2�� � ��Fk
be a 1-factorisation of G. Thus Fi is nK2, where G has 2n vertices. Now let H
have m vertices, giving

GfjV (H)jg = Gfmg = F1fmg � F2fmg � � � � � Fkfmg:

Considering the structure of the Fi, we have Fifmg = n(K2fmg).

The graph K2fmg is a regular bipartite graph of degree m � 1 and so is 1-
factorable. This means that Fifmg is 1-factorable and so in turn are GfjV (H)jg
and G[H ]. The theorem is proved.

That the conditions of this theorem are not necessary is demonstrated by the
following theorem.

4.3 Theorem. Let G be a cubic graph and n greater than three. Then Cn[G]
is 1-factorable.

Proof. Cn �G = G� Cn is 1-factorable by Kotzig's theorem [3, Theorem 7]
concerning the cartesian product of cubic graphs and cycles of length greater than
three and CnfjV (G)jg is 1-factorable by Lemma 4.1 since G has an even number
of vertices.

If n is odd and G has no 1-factor, neither graph has a 1-factor and the
conditions of Theorem 4.2 are certainly not satis�ed. This counter-example is by
no means unique. Other such graphs are for instance G(2m) for graph G cubic or
regular of even degree but not 1-factorable [4].

Let us now consider the tensor products.

4.4 Theorem. If G and H are regular graphs at least one of which is 1-

factorable, then the tensor product G
H is 1-factorable.

Proof. Since the tensor product is commutative, we can without loss of gen-
erality take G to be 1-factorable. Let

G = F1oplusF2 � � � � � Fk

be a 1-factorisation of G. Thus Fi = nK2, where G has 2n vertices. This gives

G
H = (F1 
H)� (F2 
H)� � � � � (Fk 
H)

and F2 
 H = n(K2 
 H) = nHf2g. By Lemma 4.1 Hf2g is 1-factorable, this
means that Fi 
H is 1-factorable and so also is G
H .

For the strong tensor product we derive the following results.

4.5 Theorem. If G is a 1-factorable and H a regular graph, then the strong

tensor product G�0 H is 1-factorable.
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Proof. We can write the strong tensor product G
0H as G
0H = (G
H)�
nG, where n is the number of vertices of graph H . By Theorem 4.4, the tensor
product G
H is 1-factorable, if G is 1-factorable. That nG is 1-factorable is also
immediate. Thus G
0 H is 1-factorable.

5.0 Concluding remarks. A question of interest is whether there exist
simple necessary conditions for the di�erent products of regular graphs to be 1-
factorable. These are, however, likely to be diÆcult to �nd inasmuch as it is harder
to disprove 1-factorability than to construct 1-factorisations for various classes of
regular graphs.
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