ON SOME INEQUALITIES FOR CONVEX SEQUENCES

Josip E. Pečarić

1. A sequence $a=\left(a_{1}, a_{2}, \ldots\right)$ is said to be convex if $\Delta^{2} a_{n} \geq 0, n=1,2, \ldots$, where

$$
\Delta^{2} a_{n}=\Delta\left(\Delta a_{n}\right)=a_{n+2}-2 a_{n+1}+a_{n}, \quad \Delta a_{n}=a_{n+1}-a_{n}
$$

If a and p are real sequences, then the well-known Abel identity holds:

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} a_{i}=a_{1} P_{1}+\sum_{k=2}^{n} P_{k} \Delta a_{k-1}, \quad\left(P_{k}=\sum_{j=k}^{n} p_{i}\right) \tag{1}
\end{equation*}
$$

The following generalization of (1) is given in [2]: I
If $x_{i j}, a_{i}, b_{j}(1 \leq i \leq n, 1 \leq j \leq m)$ are real numbers, then

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i j} a_{i} b_{j}=a_{1} b_{1} X_{1,1} & +b_{1} \sum_{r=2}^{n} X_{r, 1} \Delta a_{r-1}+a_{1} \sum_{s=2}^{m} X_{1, s} \Delta b_{s-1}+ \\
& +\sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s} \Delta a_{r-1} \Delta b_{s-1}
\end{aligned}
$$

where

$$
\begin{equation*}
X_{r, s}=\sum_{i=r}^{n} \sum_{j=s}^{m} x_{i j} . \tag{3}
\end{equation*}
$$

Using (1) and (2), we can get the following identity:

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i j} a_{i} b_{j}=a_{1} b_{1} X_{1,1}+b_{1} \Delta a_{1} X_{2,1}^{1}+a_{1} \Delta b_{1} X_{1,2}^{2}+\Delta a_{1} b_{1} X_{2,2}^{3}+
$$

$$
\begin{align*}
& +b_{1} \sum_{r=3}^{n} X_{r, 1}^{1} \Delta^{2} a_{r-2}+a_{1} \sum_{s=3}^{m} X_{1, s}^{2} \Delta^{2} b_{s-2}+\Delta a_{1} \sum_{s=3}^{m} X_{2, s}^{3} \Delta^{2} b_{r-2}+ \tag{4}\\
& \left.+\Delta b_{1} \sum_{r=3}^{n} X_{r, 2}^{3} \Delta^{2} a_{r-2}+\sum_{r=3}^{n} \sum_{s=3}^{m} X_{r, s}^{3} \Delta^{2} a\right) r-2 \Delta^{2} b_{s-2}
\end{align*}
$$

where

$$
\begin{gather*}
X_{r, 1}^{1}=\sum_{i=r}^{n} \sum_{j=1}^{m}(i-r+1) x_{i j}, \quad X_{1, s}^{2}=\sum_{i=1}^{n} \sum_{j=s}^{m}(j-s+1) x_{i j} \tag{5}\\
X_{r, s}=\sum_{i=r}^{n} \sum_{j=s}^{m}(i-r+1)(j-s+1) x_{i j}
\end{gather*}
$$

Indeed, we have

$$
\begin{gathered}
\sum_{r=2}^{n} X_{r, 1} \Delta a_{r-1}=\Delta a_{1} \sum_{r=2}^{n} X_{r, 1}+\sum_{r=3}^{n}\left(\sum_{k=r}^{n} X_{k, 1}\right) \Delta^{2} a_{r-2}= \\
=\Delta a_{1} X_{2,1}^{1}+\sum_{r=3}^{n} X_{r, 1}^{1} \Delta^{2} a_{r-2} ; \\
\sum_{s=2}^{m} X_{1, s} \Delta b_{s-1}= \\
=\Delta b_{1} \sum_{s=2}^{m} X_{1, s}+\sum_{s=3}^{m}\left(\sum_{j=s}^{m} X_{1, j}\right) \Delta^{2} b_{s-2}= \\
=\Delta b_{1} X_{1,2}^{1}+\sum_{s=3}^{m} X_{1, s}^{2} \Delta^{2} b_{s-2} ; \\
\sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s} \Delta a_{k-1} \Delta b_{s-1}=\Delta a_{1} \Delta b_{1} \sum_{r=2}^{n} \sum_{s=2}^{m} X_{r, s}+\Delta b_{1} \sum_{r=3}^{n}\left(\sum_{k=r}^{n} \sum_{j=2}^{m} X_{k, j}\right) \Delta^{2} a_{r-1}+ \\
+\Delta a_{1} \sum_{s=3}^{m}\left(\sum_{k=2}^{n} \sum_{j=s}^{m} X_{k, j}\right) \Delta^{2} b_{s-2}+\sum_{r=3}^{n} \sum_{s=3}^{m}\left(\sum_{k=r}^{n} \sum_{j=s}^{m} X_{k, j}\right) \Delta^{2} a_{r-2} \Delta^{2} b_{s-2}= \\
=\Delta a_{1} \Delta b_{1} X_{2,2}^{3}+\Delta b_{1} \sum_{r=3}^{n} X_{r, 2}^{3} \Delta^{2} a_{r-2}+\Delta a_{1} \sum_{s=3}^{m} X_{2, s} \Delta^{2} b_{r-2}+ \\
\\
+\sum_{r=3}^{n} \sum_{s=3}^{m} X_{r, s}^{3} \Delta^{2} a_{r-2} b_{s-2}
\end{gathered}
$$

so, from (2), we obtain (4).
Using (4), we can easily obtain the following theorem:
THEOREM 1. Let $x_{i j}(1 \leq i \leq n, 1 \leq j \leq m)$ be real numbers. Inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=s}^{m} x_{i j} a_{i} b_{j} \geq 0 \tag{6}
\end{equation*}
$$

holds for all convex sequences a and b if and only if

$$
\begin{align*}
& X_{1,1}=0, X_{r, 1}^{1}=0(r=2, \ldots, n), X_{1, s}^{2}=0(s=2, \ldots, m) \\
& X_{r, 2}^{3}(r=2, \ldots, n), X_{2, s}^{3}=0(s=3, \ldots, m) \tag{7}\\
& X_{r, s}^{3} \geq 0,(r=3, \ldots, n: s=3, \ldots, m)
\end{align*}
$$

where $X_{1,1}, X_{r, 1}^{1}, X_{1, s}^{2}$ and $X_{r, s}$ are given by (3) and (5).
Remark 1. An analogous result for convex functions can be obtained from Vasić-Lacković's result for bilinear operators ([3]).
2. If a is a convex sequence, then

$$
\begin{align*}
{[k, l, m, a] } & \equiv \frac{a_{k}}{(k-1)(k-m)}+\frac{a_{e}}{(l-m)(l-k)}+ \tag{8}\\
& +\frac{a_{m}}{(m-k)(m-l)} \geq 0 \quad(k, l, m \in N)
\end{align*}
$$

Indeed, if a is a convex sequence, then the sequence $\left(\left(a_{n}-a_{1} /(n-1)\right)_{n=2,3, \ldots}\right.$ is nondecreasing, i.e. the sequence $\left(\left(a_{n}-a_{k}\right) /(u-k)\right)_{n=k+1, k+2, \ldots}$ is also nondecreasing. If $k<l<m$, we have

$$
\left(\left(a_{l}-a_{k}\right) /(l-k)\right) \leq\left(\left(a_{m}-a_{k}\right) /(m-k)\right)
$$

wherefore we obtain (8). Analogously, we can get (8) in other cases $(k<m<$ l, etc.).

Using (8), analogously to the proof which is given in [2], we can get the following theorem:

THEOREM 2. Let a and b be convex sequences, $e=(1,2, \ldots, n), p_{k} \geq 0$ $\left(k=1, \ldots, n ; P_{1}>0\right)$; then
(9) $F(a b)-F(a) F(b) \geq(F(e a)-F(e) F(a))(F(e b)-F(e) F(b)) /\left(F\left(e^{2}\right)-F(e)^{2}\right)$,
where $a b=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$ and $F(a)=\frac{1}{P_{1}} \sum_{i=1}^{n} p_{i} a_{i}$. If a or b is an arithmetic sequence, then the equality in (9) holds.

Using Theorem 2, we can prove the following result:
Theorem 3. If a and b are convex sequences, then
(10) $\sum_{i=1}^{n} a_{i} b_{i}-\frac{1}{n} \sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i} \geq \frac{12}{n\left(n^{2}-1\right)} \sum_{k=1}^{k}(k-(n+1) / 2) a_{k} \sum_{j=1}^{n}(j-(n+1) / 2) b_{j}$
with equality when at least one of the sequences a, b is an arithmetic sequence.
Proof. We select $F(a)=\frac{1}{n} \sum_{i=1}^{n} a_{i}$. Then $F(e)=(n+1) / 2, F\left(e^{2}\right)=$ $(n+1)(2 n+1) / 6$ and from (9), we obtain (10).

Corollary 1. Let a and b be convex sequences, and assume that

$$
\begin{equation*}
\sum_{k=1}^{n}\left(k-\frac{n+1}{2}\right) b_{k}=0 \tag{11}
\end{equation*}
$$

Then Čebyšev's inequality

$$
\sum_{i=1}^{n} a_{i} b_{i}-\frac{1}{n} \sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i} \geq 0
$$

holds.

Remarks: 2° If $b_{k}=b_{n-k+1}(k=1, \ldots, n)$, then (11) holds.
3° Theorems 2 and 3 are discrete analogues of Lupas' inequalities [2]. Corollary 1 is a discrete analogue of the Atkinson inequality [4].
3. We can easily show that (10) can be rewritten in the form of inequality (6) for $n=m$. Using this fact, from Theorem 1, we can obtain the following result:

LEMMA 1. Let p and w be real sequences. Inequality

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{i}-\frac{1}{n} \sum_{k=1}^{n} a_{k} \sum_{i=1}^{n} b_{i} \geq K \sum_{k=1}^{n} p_{k} a_{k} \sum_{i=1}^{n} w_{i} b_{i} \tag{12}
\end{equation*}
$$

is walid for every pair a and b of convex sequences if and only if

$$
\begin{align*}
& K \sum_{i=1}^{n} p_{i} \sum_{j=1}^{n} w_{j}=0 \tag{13}\\
& K \sum_{k=r}^{n} p_{k}(k-r+1) \sum_{j=1}^{n} w_{j}=0(r=2, \ldots, n) \tag{14}\\
& K \sum_{j=s}^{n} w_{j}(j-s+1) \sum_{k=1}^{n} p_{k}=0(s=2, \ldots, n) \tag{15}\\
& K \sum_{k=r}^{n} p_{k}(k-r+1) \sum_{j=2}^{n} w_{j}(j-1)= \tag{16}\\
& =\sum_{i=r}^{n}(i-r+1)(i-(n+1) / 2)(r=2, \ldots, n) \\
& K \sum_{k=2}^{n} p_{k}(k-1) \sum_{j=s}^{n} w_{j}(j-s+1)= \tag{17}\\
& =\sum_{i=s}^{n}(i-s+1)(i-(n+1) / 2)(s=3, \ldots, n) \\
& K \sum_{k=r}^{n} p_{k}(k-r+1) \sum_{j=s}^{n} w_{j}(j-s+1) \leq \tag{18}\\
& \leq \sum_{i=\max (r, s)}^{n}(i-r+1)(i-s+1)-\frac{1}{n} \sum_{i=r}^{n}(i-r+1) \sum_{i=s}^{n}(i-s+1)
\end{align*}
$$

Now we will introduce the following notation:

$$
\begin{align*}
& u=\sum_{k=1}^{n} p_{k}, \quad v=\sum_{i=1}^{n} w_{i}, \quad P=\sum_{k=2}^{n}(k-1) p_{k}, \quad Q=\sum_{i=2}^{n}(i-1) w_{i}, \tag{19}\\
& U(r)=\sum_{i=r}^{n}(i-r+1)(i-(n+1) / 2) .
\end{align*}
$$

From condition (16) for $r=2$, i.e. from

$$
\begin{equation*}
K P Q=U(2)=n\left(n^{2}-1\right) / 12 \tag{20}
\end{equation*}
$$

it follows that we have

$$
\begin{equation*}
K \neq 0, \quad P \neq 0, \quad Q \neq 0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
K=n\left(n^{2}-1\right) / 12 P Q \tag{22}
\end{equation*}
$$

Using (21) again on the basis of (14) and (15) we find that

$$
\begin{equation*}
u=v=0 \tag{23}
\end{equation*}
$$

In such a way we find that if condition (23) is valid, then the conditions (13), (14) and (15) are satisfied.

Conditions (21) and (16), i.e. (17), imply that

$$
\begin{align*}
& \sum_{k=r}^{n} p_{k}(k-r+1)=12 P U(r) /\left(n\left(n^{2}-1\right)\right) \quad(r=2, \ldots, n) \tag{24}\\
& \sum_{k=r}^{n} w_{k}(k-r+1)=12 Q U(r) /\left(n\left(n^{2}-1\right)\right)(r=2, \ldots, n) \tag{25}
\end{align*}
$$

By substitution of (24) and (25) in (18), we have

$$
\begin{align*}
& \sum_{i=\max (r, s)}^{n}(i-r+1)(i-s+1)-\frac{1}{n} \sum_{i=r 1}^{n}(i-r+1) \sum_{i=s}^{n}(i-s+1) \geq \\
& \quad \geq \frac{12}{n\left(n^{2}-1\right)} U(r) U(s)=\frac{12}{n\left(n^{2}-1\right)} \sum_{i=r}^{n}(i-r+1)(i- \tag{26}\\
& \quad-(n+1) / 2) \sum_{j=s}^{n}(j-s+1)(j-(n+1) / 2) .
\end{align*}
$$

Since the sequences a and b defined by

$$
a_{k}=0(k=1, \ldots, r-1) \text { and } a_{k}=k-r+1(k=r, \ldots, n),
$$

and

$$
b_{k}=0(k=1, \ldots, s-1) \text { and } b_{k}=k-s+1 \quad(k=s, \ldots, n)
$$

are convex, from (10) we have (26), i.e. (26) is true.
From what we have said above infer the following lemma:
Lemma 2. Conditions (13) - (18) are valid for a pair of seguences p and w if and only if conditions (21), (22), (23), (24) and (25) are satisfied, where u, v, P, Q, and U are defined by (19).

Now, we shall show that $p_{k}=k_{1}(k-(n+1) / 2)$ where k_{1} is a real constant.
From (24), for $r=k$ and $k+1$, we have

$$
p_{k}=k_{1}(U(k)-2 U(k+1)+U(k+2))=k_{1}(k-(n+1) / 2)
$$

where $k_{1}=12 P /\left(n\left(n^{2}-1\right)\right)$ and $k=1, \ldots, n-2$.
For $r=n$, from (24) we have

$$
p_{n}=k_{1} U(n)=k_{1}(n-(n+1) / 2)
$$

and for $r=n-1$, we have $p_{n-1}+2 p_{n}=k_{1} U(n-1)$, i.e.

$$
p_{n-1}=k_{1}(U(n-1)-2 U(n))=k_{1}(n-1-(n+1) / 2)
$$

Analogously, we can get that $w_{k}=k_{2}(k-(n+1) / 2)$ where k is a real constant. 2 So, in virtue of Lemma 2 we find that the following lemma is valid:

Lemma 3. Let us suppose that p and w are real sequences. Then the sequences p and w satisfy conditions (13)-(18) if and only if these sequences are of the form

$$
\begin{equation*}
p_{k}=k_{1}(k-(n+1) / 2), w_{k}=k_{2}(k-(n+1) / 2), \quad(k=1, \ldots, n) \tag{27}
\end{equation*}
$$

where the real constants are arbitrarily chosen such that $k_{i} \neq 0(i=1,2)$, and where we have

$$
\begin{equation*}
K=12 /\left(n\left(n^{2}-1\right) k_{1} k_{2}\right) \tag{28}
\end{equation*}
$$

On the basis of the results above it can be directly concluded that the following theorem is valid:

Theorem 4. Suppose that p and w are real sequences. The inequality of the form (12) holds for every pair of convex sequences a and b if and only if these sequences p and w are of the form (27) where the real constants $k_{1} \neq 0$ and $k_{2} \neq$ 0 are arbitrary and where the constant K is given by (28). In other words, for every pair of convex sequences a and b inequality (12) holds true if and only if that inequality is of the form (10).

Remark 4. Theorem 4 is a discrete analogue of Vasić - Lacković's result from [5].

REFERENCES

[1] J. E. Pečarić, On an inequality of T. Popoviciu, Bul. Sti. Tehn. Inst. Politehn, Timişoara 24 (38) (1979), 9-15.
[2] A. Lupaş, An integral inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No 381-No 409 (1972), 17-19.
[3] P. M. Vasić, I. B. Lacković, Notes on convex functions II: On continuous linear operations defined on a cone of convex functions, Ibid. No 602-No 633 (1978), 53-59.
[4] F. V. Aktinson, An inequality, Ibid. No 357-No 380 (1971), 5-6.
[5] P. M. Vasić, I. B. Lacković, Notes on convex functions VI: On an inequality for convex functions proved by A. Lupas, Ibid. No 634-No 677 (1979), 36-41.

Građevinski fakultet
Bulevar Revolucije 73
11000 Beograd

