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AN ALTERNATIVE THEOREM FOR CONTINUOUS

RELATIONS AND ITS APPLICATIONS

�Akos M�unnich and �Arp�ad Sz�az

0. Introduction

In this paper, improving [10, Lemma 3.5] of M. S. Stanojevi�c, we prove the
following alternative theorem: If S is a continuous relation from a connected space
X into a space Y and V is a subset of Y such that at least one of the following
conditions is ful�lled: (i) V is both open and closed, (ii) S is open-valued and V is
closed, (iii) S�1 is open-valued and V is open, (iv) both S and S�1 are open-valued;
then either S(x) � V for all x 2 X , or S(x) n V 6= ; for all x 2 X .

This theorem has a lot of interesting applications. In particular, it can be
used to obtain not only the improvement [10, Theorem 3.6] of Ponomarev's [6,
Theorem 4.1] (which was later rediscovered by R. E. Smithson [8, Corollary 1.7]),
but also to improve [2, Proposition 1], and to obtain [2, Proposition 2] of S. P.
Franklin.

The hypothesis that a relation or/and its inverse is open-valued occurs very
rarely in the literature. (See [2]). We think this absence is very surprising, despite
the fact that such relations, under some natural additional conditions, are `almost
constant'. (See Corollaries 2.5 and 2.8, and Theorem 3.10). Namely, each open
cover of a topological space may be viewed as an open-valued relation. For instance,
a topological space X is compact if and only if each open-valued relation S from
a set onto X has a restriction with �nite domain which is still onto X . Note that
all the concepts de�ned in terms of open covers (such as paracompactness, for
instance) have similar reformulations. This suggests a very broad program for the
investigation of open-valued relations.

Terminology and notation in this paper will mainly follow Kelley [4] and
Smithson [9]. ([4] is our main reference concerning relations and topological spaces,

AMS Subject Classi�cation (1980): 54C60.
Key words and phrases: Open or closed-valued, lower or upper semicontinuous relations

(multifunctions).



164 �Akos M�unnich and �Arp�ad Sz�az

[9] is the best brief introduction to the topological theory of relations which are
usually called multifunctions in this context. Note that it would be useful to com-
bine the algebraic and topological theories of relations). Moreover, our terminology
also owes much to the paper [12] of G. T. Whyburn.

1. Simple properties of open-valued relations

De�nition 1.1. A relation S from a set X into a topological space Y is said
to be open (closed)-valued if S(x) is open (closed) in Y for all x 2 X .

Remark 1.2. This terminology is motivated by that of Whyburn [12]. Franklin
[3, 4], Smithson [9] and Stanojevi�c [10] would call such relations image-open
(closed), point open (closed) and Y -open (closed), respectively. (Note that the
latter term is more precise, but less descriptive than the former ones.)

Proposition 1.3. Let S be a relation from a topological space X into a

topological space Y. If S is open-valued then S(A) is open in Y for each A � X. In

particular if S�1 is open-valued, then S is lower semi-continuous.

Proof. If S is open-valued and A � X , then from S(A) =
S
x2A

S(X), it is
clear that S(A) is open in X for each B � Y , which is a stronger property than
the lower semi-continuity of S.

Proposition 1.4. Let S be an open-valued, upper semi-continuous relation

from a topological space X into a topological space Y. Then S�1(B) is closed in X

for each B � Y . In particular, S�1 is closed-valued.

Proof. Let B � Y . Then a straightforward computation shows that X n
S�1(B) = fx 2 X : S(x) � Y nBg. Thus, if x0 2 X nS�1(B), then S(x0) � Y nB.
Moreover, since S is upper semicontinuous at x0 and S(x0) is a neighborhood of
itself in Y , there exists a neighborhood U of x0 in X such that S(U) � S(x0).
Thus, we have U � X n S�1(B). Consequently, X n S�1(B) is open in X.

Remarc 1.5. If S is a relation from a topological space X into a topological
space Y such that S is open in X � Y , then both S and S�1 are open-valued.

Namely, if y 2 S(x), i.e., x 2 S�1(y), then by de�nition of the product
topology, there exist neighborhoods U and V of x and y in X and Y , respectively
such that (x; y) 2 U � V � S. Hence, it follows that y 2 V � S(x) and x 2 U �
S�1(y). Consequently, S(x) and S�(y) are open in Y and X , respectively.

Example 1.6. Consider [0; 1] equipped with its usual topology, and de�ne
the relation S from [0; 1] into itself such S(0) = [0; 1] and S(x) = [0; 1] n fxg if
0 < x � 1. Then both S and S�1 are open-valued, but S is not open [0; 1]2.

Note that S�1 = S and S nS0 = f(0; 0)g. (Moreover, it is noteworthy that S
is lower semi-continuous but S is not upper semi-continuous. Note that S is upper
semi-continuous only at the point 0.)

Problem 1.7. In the light of Remark 1.5 and Example 1.6, it is natural to ask
when the open-valuedness of a relation or/and its inverse implies that it is open in
the product space?
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2. An alternative theorem and its applications

The following alternative theorem improves [10, Lemma 3.5] of M. S. Stano-
jevi�c, and can be used to obtain not only the improvement [10, Theorem 3.6] of
Ponomarev's [6, Theorem 4.1], but also to improve [2, Proposition 1], and to obtain
[2, Proposition 2] of S. P. Franklin, and also to give a partial answer to Problem
1.7.

Theorem 2.1. Let S be a continuous relation from a connected space X into

an arbitrary topological space Y and let V be a subset of Y such that at least one of

the following conditions is ful�lled:

(i) V is both open and closed in Y;

(ii) S is open-valued and V is closed in Y;

(iii) S�1 is open-valued and V is open in Y;

(iv) both S and S�1 are open-valued.

Then either S(x) � V for all x 2 X, or S(x) n V 6= ; for all x 2 X.

Proof. Since fx 2 X : S(x) � V g = X n S�1(Y n V ) and X is connected,
we have to show only that in each of these cases S�1(Y n V ) is both open and
closed in X . However, this is quite obvious by the de�nitions of semicontinuities
and Propositions 1.3 and 1.4.

Corollary 2.2. Let S be a continuous relation from a connected space X

onto an arbitrary topological space Y such that S(x0) is connected in Y for some

x0 2 X. Then Y is also connected.

Proof. Suppose that V is both open and closed in Y . Since S(x0) is connected
in Y , either S(x0) � V or S(x0) � Y nV . Thus, by Theorem 2.1, either S(X) � V
or S(X) � Y n V . Hence, since S(X) = Y , either V = Y or V = ;.

Corollary 2.3. Let S be a continuous relation from a connected space X

onto an arbitrary topologicul space Y such that S(x0) lies in a component C of Y

for some x0 2 X, and suppose that either S is open-valued or C is open. Then Y

is also connected.

Proof. It is well-known that C is always closed in Y . Thus, by Theorem 2.1,
Y = S(X) � C, and hence Y = C.

Corollary 2.4. Let S be an almost single-valued [10, De�nition 3.1], upper
semi-continuous relation from a connected space X onto a T0-space Y such that S�1

is open-valued. Then Y is either empty or a singleton.

Proof. Suppose on the contrary that there exist y1; y2 2 Y such that y1 6= y2.
Since Y is T0, either y1 62 fy2g or y2 62 fy1g. We may assume that y1 62 fy2g Then,
there exists an open neighborhood V of y1 such that y2 =2 V . Since S is almost
single-valued, there exists an x1 2 X such that S(x1) � V . Thus, by Theorem 2.1,
Y = S(X) � V , which is a contradiction since y2 62 V .
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Corollary 2.5. Let S be an open-valued, continuous relation from a topo-

logical space X into a topological space Y such that either S is closed-valued or S�1

is open-valued. Then S is constant on each component of X.

Proof. Since the restrictions of S to the components of X have the same
properties, we may assume that X is connected. Then, by taking V = S(x0) for
any x0 2 X , from Theorem. 2.1, we get S(X) � S(x0), and hence S(x0) = S(X).
Consequently, S is constant.

Corollary 2.6. Let X, Y and S be as in Corollary 2.5, and suppose that

the components of X are open. Then S is open in X � Y .

Proof. Let (Xi) be the family of all components of X , and Yi = S(Xi). Then,
by Corollary 2.5, S =

S
i
Xi � Yi, whence it is clear that S is open in X � Y .

Remark 2.7. Note that if a topological space is locally connected, or the family
of its components is locally �nite, then each of its components is open.

Corollary 2.8. Let S be an upper semi-continuous relation from a topolog-

ical space X into a T1-space Y such that S�1 is open-valued. Then S is constant

on each component of X.

Proof. We may again suppose that X is connected. Let x0X , and V be the
family of all open neighborhoods of S(x0) in Y . Then, by Theorem 2.1, S(X) � V
for all V 2 V , Moreover, since Y is T1,

T
V = S(x0). Thus, we have S(X) � S(x0),

and hence S(x0) = S(X).

Corollary 2.9. Let S be an open-valued, continuous relation from a topolog-

ical space X into a topological space Y. Then the relation T from X into Y de�ned

by T (x) = S(x) is constant on each component of X.

Proof. Suppose that X is connected. Then, by taking V = T (x0) for any

x0 2 X , from Theorem 2.1, we get S(X) � T (x0), and hence T (x0) = S(X).

Corollary 2.10. Let S be an upper semi-continuous relation from a topolog-

ical space X into a regular space Y such that S�1 is open-valued. Then the relation

T from X into Y de�ned by T (x) = S(x) is constant on each component of X.

Proof. Suppose that X is connected. Let x0 2 X and V be the family of
all open neighborhoods of T (x0) in Y . Then, by Theorem 2.1, S(X) � V for all
V 2 V . Moreover, since Y is regular,

T
V = T (x0). Thus, we have S(X) � T (x0),

and hence T (x0) = S(X).

Remark 2.11. If S is an upper semi-continuous relation from a topological
space X into a regular space Y , then by [3, Theorem (1)], we have S(x) = S(x) for
all x 2 X .

3. Applications to nonmingled-valued relations

De�nition 3.1. A relation S is said to be nonmingled-valued if S(x1)\S(x2) 6=
; implies that S(x1) = S(x2).
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Remark 3.2. Here, we again followed Whyburn's terminology [12]. Berge
[1] and Smithson [8, 9] call such relations semi-single-valued. (The term `almost
single-valued', due to Ponomarev [7, p. 534], should also be replaced by a better
one.)

Remark 3.3. Nonmingled-valued relations occur frequently in algebra, and
also in analysis, since all equivalences, certain additive, and all linear relations [5,
11], are nonmingled-valued.

They are closely related to equivalence relations as shown by the following
characterization which will be used frequently in a subsequent paper.

Proposition 3.4. Let S be a relation from a nonempty set X into a nonempty

set Y. Then S is nonmingled-valued if and only if there exist an eguivalence relation

R on S(X) and a function f from X into Y such that S = R Æ f .

Proof. To prove the less trivial part, suppose that S is nonmingled-valued.
Then the set fS(x)gx2X forms a partition of S(X) which determines an equivalence
relation R on S(X) such that R(y) = S(x) if y 2 S(x). Moreover, by the axiom of
choice, there exists a selection f for S (i.e., a function f from X into Y such that
f(x) 2 S(x) for all x 2 X). Thus, by the de�nition or R, we have S(x) = R(f(x))
for all x 2 X .

The next characterization is certainly due to G. T. Whyburn [12]. A partic-
ular case of its `only if part' was formerly observed by S. McLane [5]. (See also
[11].)

Proposition 3.5. A relation S is nonmingled-valued if and only if S ÆS�1 Æ
S = S.

Proof. We clearly have

S(S�1(S(x0))) =
[
fS(x) : S(x) \ S(x0) 6= ;g

for any x0, whence the assertion is quite obvious.

Remark 3.6. The above equality shows also that we have S � S Æ S�1 Æ S for
any relation S.

Corollary 3.7. A relation S is nonmingled valued if and only if its inverse

S�1 is nonmingled-valued.

Proof. This follows immediately from Proposition 3.5, since we have (S Æ
S�1 Æ S)�1 = S�1 Æ S Æ S�1 for any relation S.

Theorem 3.8. Let S be a nonmingled valued relation from a topological

space X into a topological space Y such that either S is open-valued and lower

semi-continuous or S�1 is open-valued. Then S is continuous.

Proof. Let x0 2 X and V be a neighborhood of S(x0) in Y . Then U =
S�1(S(x0)) is a neighborhood of x0 in X . Moreover, by Proposition 3.5, we have
S(U) = S(S�1(S(x0))) = S(x0) � V , and thus S is is upper semi-continuous at
x0.
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Corollary 3.9. Let S be an open-valued and nonmingled-valued relation

from a topological space X into a topological space Y. Then S�1 is continuous.

Proof. Since, by Corollary 3.7, S�1 is also nonmingled-valued and (S�1) = S
is open-valued, Theorem 3.8 implies that S�1 is continuous.

The next two theorems are derived directly from Corollaries 2.5, 2.8 and 2.10
using Theorem 3.8. The �rst one is also followed by a corollary which is again quite
obvious by Corollary 3.7.

Theorem 3.10. Let S be nonmingled-valued relation from a topological space

X into a topological space Y such that either both S and S�1 open-valued or merely

S�1 is open-valued but Y is T1. Then S is constant on each component of X.

Corollary 3.11. Let S be an open-valued and nonmingled-valued relation

from a topological space X onto an topological space Y such that either S�1 is

open-valued or X is T1. Then S�1 is constant on each component of X.

Theorem 3.12. Let S be nonmingled-valued relation from topological space

X into a regular space Y such that S�1 is open-valued. Then the relation T from

X into Y de�ned by T (x) = S(x) is constant on each component of X.
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