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EDGE-COLORING OF A FAMILY OF REGULAR GRAPHS

Bojan Mohar, Toma�z Pisanski

Abstract. Let G(m) denote the composition graph G[mK1]. An obvious necessary con-
dition for G(m) to be 1-factorable is that G is regular and mp is even, where p is the number
of vertices of G. It is conjectured that this is also a suÆcient condition. For regular G it is
proved that G(m) is 1-factorable if at least one of the following conditions is satis�ed: (a) G is
1-factorable, (b) G is of even degree and m is even, (c) m is divisible by 4, (d) G has a 1-factor
and m is even, (e) G is cubic and m is even. The results are used to solve some other problems.

1. Introduction. The necessary background and terminology of graph
theory can be found in [1, 5], in particular in the paper by Fiorini and Wilson [4].

A factor F of G is a subgraph of G with the vertex set V (F ) = V (G), and a
factization G = F1 � F2 � � � � � Fk of G is a family of factors F1; F2; . . . ; Fk whose
edge sets E(F1); E(F2); . . . ; E(Fk) partition the edge set E(G). A d-regular factor
of G is said to be a d-factor. If there exists a factorization of G into d-factors then
it is called a d-factorization and G is said to be d factorable.

Vizing's well-known theorem [12] which states that every graph G with max-
imum degree �(G) can be edge-colored with at most �(G) + 1 colors, gives rise to
the famous Classi�cation problem. Obviously there is no edge-coloring of G using
less than �(G) colors. A graph G is said to be of class 1 if it can be edge-colored
with �(G) colors, otherwise it is of class 2. A regular graph is of class 1 if and
only if it is 1-factorable. The classi�cation problem is extremely diÆcult even for
regular graphs.

Various partial results in this �eld were obtained in several directions by
di�erent authors [3, 6, 8, 9]. A good survey is given by Fiorini and Wilson [4].
Recently Kotzig [7] investigated 1-factorization of Cartesian products of regular
graphs. The aim of this paper is to generalize the results of Laskar and Hare
[8], and Parker [9], and to prepare ground for 1-factorization of other products of
regular graphs [11].
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ByG[H ] we denote the composition of graphs, also known as the lexicographic
product. In the particular case when H is the null graph mK1 on m vertices, we
give the composition G[mK1] a special symbol: G(m). This notation almost agrees
with that of Bouchet [2] except that he uses m as a subscript. In our notation the
regular multipartite graph Kn(m) can be written as Kn(m).

If G has p vertices and q edges, then G(m) has mp vertices and m2q edges.
Each vertex of degree d in G gives rise to m vertices of degree md in G(m). This
means that G(m) is k-regular, if and only if k = dm and G is d-regular. An obvious
necessary condition for G(m) to be 1-factorable is that G is regular and mp is even,
where p is the number of vertices of G. The authors have no counter-example to the
converse statement. This paper is devoted to the study of the following conjecture.

1.1. Conjecture. Let G be a graph on p vertices and m > 1. Then G(m)
is 1-factorable if and only if G is regular and pm is even.

2. Main results. The Conjecture 1.1 is supported by the following theorems:

2.1. Theorem. If G is 1-factorable, then G(m) is 1-factorable.

2.2. Theorem. If G is regular of even degree, then G(2m) is 1-factorable.

2.3. Theorem. For any regular graph G, the graph G(4m) is 1-factorable.

2.4. Theorem. If G is regular and has a 1-factor, then G(2m) is 1-
factorable.

2.5. Theorem. If G is a cubic graph, then G(2m) is 1-factorable.

The proofs of these theorems are given in Sections 3 and 4. Here are three
simple corollaries:

2.6. Corollary. if G is a regular bipartite graph, then G(m) if 1-factorable
for arbitrary m.

Proof. Apply K�onig's well-known theorem [5, Theorem 9.2] and our Theorem
2.1!

2.7. Corollary. (Laskar and Hare, [8]) The complete n-partite graph

Kn(m) each of whose parts has exactly m vertices is 1-factorable if and only if

mn is even.

Proof. If mn is odd then Kn(m) obviously has no 1-factor. For even n the
graphKn is 1-factorable, [5, Theorem 8.1], hence Theorem 2.1 applies. If, however,
n is odd and m is even, Theorem 2.2 applies.

2.8. Corollary. (Parker, [9]) The generalized cycle Cn(m) is 1-factorable
if and only if mn is even.

Proof. Substitute C for K in the proof of the Corollary 2.7 and omit the
reference.

Some other partial results are given in the subsequent sections.
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3. Proofs. In this section we introduce some lemmas necessary to prove
all theorems stated in Section 2 except Theorem 2.5 which is proved in the next
section.

3.1. Lemma. Let F1 � F2 � � � � � Fk be a factorization of G. Then F1(m)�
F2(m)� � � � � Fk(m) is a factorization of G(m).

Proof. Trivial!

Proof of Theorem 2.1. If G is 1-factorable then let G = F1 �F2� � � � �Fd be
one of its 1-factorizations. Fi(m) is a m-regular bipartite graph, for i = 1; 2; . . . ; d.
By K�onig's theorem [5, Theorem 9.2] it is 1-factorable. By Lemma 3.1 the graph
G(m) can be factored into factors Fi(m), which turned out to be 1-factorable,
therefore G(m) itself is 1-factorable.

The easy proofs of the following two lemmas are omitted.

3.2. Lemma. If G1; G2; . . . ; Gk are components of graph G:

G = G1 [G2 [ � � � [Gk

then

G(m) = G1(m) [G2(m) [ � � � [Gk(m)

3.3. Lemma. G(km) = G(k)(m).

The key to Theorem 2.2 is the following lemma:

3.4. Lemma. Cn(2) is 1-factorable.

Proof. Each vertex of graph Cn(2) is labeled by an ordered pair (u; k), u 2
f0; 1; . . . ; n � 1g and k 2 f0; 1g. It is assumed that two consecutive vertices on a
cycle are labeled by consecutive integers modulo n. Obviously all the edges joining
(i; 0) to ((i + 1) mod n; 1), for i = 0; 1; . . . ; n � 1 constitute a 1-factor of Cn(2).
Removing this 1-factor we obtain a n-gonal prism. Each prism is edge-3-colorable:
choose an arbitrary 3-coloring for both base cycles and use the missing color at
each vertex for its lateral edge. This proves the lemma.

Proof of Theorem 2.2. Since by Lemma 3.3 we have G(2m) = G(2)(m), by
Theorem 2.1 its is enough to prove that G(2) is 1-factorable. As G is regular of
even degree, by Petersen's theorem [10, p. 200] it is 2-factorable. Using Lemmas
3.1 and 3.2 it is suÆcient to prove that Cn(2) is 1-factorable. This is established
by Lemma 3.4.

Proof of Theorem 2.3. By Lemma 3.3 we have G(4m) = G(2)(2m). Since
G(2) is regular of even degree, Theorem 2.2 applies.

Proof of Theorem 2.4. If the degree of G is even, this theorem is just a special
case of Theorem 2.2. Otherwise remove the 1-factor and apply the same theorem.

4. Cubic graphs. In this section Theorem 2.5 is proved by induction on
the number of bridges. The induction basis is established using Theorem 2.4 and
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Petersen's theorem concerning the existence of 1-factors in cubic graphs [10, p.
218]. Lemma 4.3 is crucial in the proof of Theorem 2.5. It guarantees the existence
of a special edge-coloring of G(2), for an arbitrary cubic (multi) graph G.

For a graph G, an edge-coloring of G(2) is called simple if it satis�es the
following condition: for every edge e in G, either e(2) is colored with only two
colors or the edge e lies on a unique cycle C such that both C(2) and e(2) are
edge-4-colored. In connection with this de�nition the following corollary to Lemma
3.4 is of interest:

4.1. Corollary. For every cycle C there exists an edge-4-coloring of C(2)
such that for every edge e of C four colors are used to color the edges of e(2).

Proof. The construction of the proof of Lemma 3.4 gives the desired edge-4-
coloring of C(2).

This corollary and the following lemma are used in the proof of Lemma 4.3.

4.2. Lemma. For every path P there exists an edge-4-coloring of P (2) such

that for every edge e of P two colors are used to color the edges of e(2).

Proof. Trivial.

4.3. Lemma. For every cubic graph G there exists a simple edge-6-coloring

of G(2).

Proof. Without loss of generality assume that C is connected. The lemma
is proved using induction on the number of bridges in G. By Petersen's theorem
[1O, p. 218] every cubic (multi)graph G with at most one bridge is a sum of a
1-factor and a 2-factor: G = F1 � F2. By Theorem 2.1 the factor F1(2) of G(2) is
edge-2-colorable and by Corollary 4.1 the factor F2(2) is edge-4-colorable in such
a way that these colorings give rise to a simple edge-6-coloring of G(2). This takes
care of the induction basis.

Let G be an arbitrary cubic graph with k bridges (k � 2). By the induction
hypothesis, for all cubic graphs with less than k bridges there exists a simple edge-
6-coloring. Two possibilities arise.

Case 1. In G there are 3 bridges incident with the same vertex v, as depicted
in Figure 1a. We construct the three cubic graphs H1, H2 and H3 of Figue 1b. In
each of these three graphs the number of bridges is at least two less than in G. By
the induction hypothesis we can get simple edge-6-colorings of H1(2), H2(2) and
H3(2). The bridges e1, e2, and e3 do not belong to any cycle, therefore e1(2), e2(2),
and e3(2) are each colored with only two colors. By appropriate permutation of
the colors we can construct such colorings that e1(2) is colored with colors 1 and
2, e2(2) with colors 3 and 4, and e3(2) with colors 5 and 6. Combining the three
parts colored in this way, we get a simple edge-6-coloring of G(2).
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Case 2. No two bridges have a common vertex. Then we have a situation
shown in Figure 2a, where u and v are distinct vertices and G1 and G3 are blocks.
The same arguments as in Case 1 apply for the two graphs of Figure 2b. Graph
H1(2) [or H3(2)] admits and edge-6-coloring and the two colors used for e1(2) [or
e3(2)] can be chosen in advance. Graph L depicted in Figure 2c is obtained from
G2 by adding a new edge e, incident with u and v. By the induction hypothesis
we can get a simple edge-6-coloring of L(2). Cutting the edge e in L we obtain M ,
as depicted in Figure 2d. The simple edge-6-coloring of L(2) induces an edge-6-
coloring of M(2) in which f1(2) and f2(2) are colored the same way as e(2). Again
we have two cases:

Case 2.1. If e(2) is edge-2-colored in L(2), the induced coloring of M(2) is
simple.

Case 2.2. Otherwise there is a unique cycle C in L such that e lies on C and
C(2) is edge-4-colored in L(2). Let P = C � e. Obviously P is a path. Starting
with the induced edge-6-coloring of M(2) we replace the coloring of P (2) with the
coloring of Lemma 4.2 and we use the two unused colors at u to color f1(2) and
the two unused colors at v to color f2(2). This new coloring ofM(2) can be readily
seen to be a correct simple edge-6-coloring.

Combining the simple edge-6-coloring of M(2) [which was obtained in both
sub-cases] with the suitably adjusted simple edge-6-colorings of H1(2) and H3(2)
gives us the required simple edge-6-coloring of G(2). The lemma is proved.

Proof of Theorem 2.5. By Lemma 3.3 and Theorem 2.1 it suÆces to prove
that G(2) is 1-factorable. This follows from Lemma 4.3.

Lemma 4.3. guarantees that for any cubic graph G there exists a simple
edge-6-coloring of G(2). This in turn implies that for any bridge e of G the edges
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of e(2) are colored with only two colors. The following proposition generalizes this
observation to arbitrary edge-6-colorings of G(2).

4.5. Proposition. Let e be a bridge of a cubic graph G. For an arbitrary

edge-6-coloring of G(2), the edges of e(2) are colored with exactly two colors.

Proof. As e(2) is isomorphic to the complete bipartite graphK2;2 at least two
colors are needed to color its edges. It is a bit harder to see that no more than two
colors are used in an edge-6-coloring. Let u and v be the end-points of the bridge e,
i.e. e = uv. The edges of e(2) are ei;j = (u; i)(v; j), i; j 2 f0; 1g. Take any edge-6-
coloring of G(2) and any edge ei;j of e(2). Let c be the color of ei;j . If we show that
e1�i;1�j is also colored by c, we will establish the lemma. Each color in the given
edge-coloring determines a 1-factor in G(2). In particular the color c determines a
1-factor in G(2) and also in the two-vertex-deleted graph H = G(2)� (u; i)� (v; j).
Since e1�i;1�j constitutes a bridge joining two odd components in H , it lies on
every 1-factor in H , in particular in the 1-factor determined by color c.

5. Concluding remarks. In order to apply our theorems to more general
compositions of graph we need the following simple proposition:

5.1. Proposition. If H is a 1-factorable graph on m vertices and G(m) is

1-factorable, then the composition G[H ] is 1-factorable t 1-factorable too.

Proof. Since G[H ] can be factored into G(m) and pH , where p is the number
of vertices of G, the Proposition follows readily.

This proposition, combined with the other results of this paper, gives an
interesting corollary.

5.2. Corollary. If H is 1-factorable, on m vertices then G[H ] is 1-factorable
if at least one of the following is true:

(a) G is regular of even degree,

(b) m is divisible by 4,

(c) G is regular and has a 1-factor,

(d) G is cubic.

A generalization of Proposition 5.1 and of Corollary 5.2 is obtained using
di�erent methods in a forthcoming paper [11]. However the methods do not give
a generalization of the other results of this paper.

Acknowledgment. The authors gratefully acknowledge the great help af-
forded by their friend John Shawe-Taylor in preparing this paper.

Note added in proof. M. Truszczy�nski found a counterexample to our Conjecture 1.1.
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