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SOME APPROACHES TO TOPOLOGICAL SPACES1

-Duro Kurepa

Summary. There are several approaches to the concept of topological spaces which are
based respectively on limit, neighborhood, deviation, coincidence degree, transfer of organization,
topos, etc. From the historical point of view we stress in particular Newton's approach by limits.

0. An abstract space in any set S and any S-un f of its subsets: one speaks
of the ordered pair or of the 2-nd (S; f), where f : PS ! PS. 2 The fundamental
fact here is that for every X � S one has fX � S; in particular for the void v one
has fv � S; and one also has fS � S.

1. There are trivial cases of spaces. For example take the mapping f to be
constant or \linear" in the sense that fX = X [A or fX = �X [A, where A is a
given member of PS and �X is the complement CX:=S �X:= �X .

2. Another very well known case is that of closures: isotone S-uns such that

X � X , v = v and X = X .

3. Historically, the derivation D : PS ! PS of sets played a great role. It
was de�ned by the condition that

3.1 a 2 DX , x 2 D(X n fag) and X n fag 6= v:

These two approaches are linked by the equality

3.2 X = X [DX:
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134 -Duro Kurepa

4. We have some other notions in a space (S; �): for any set X � S we have
the interior

R
X of X , the exterior extX , the boundary or the border FrX of X

de�ned respectively by:
Z
X = CCX (3 factors)4.1

extX =

Z
(CX) = CX (2 factors)4.2

FrX = C(

Z
X [ extX):4.3

One has several relations between these operators; e.g.

FrX = FrCX4.4

Fr(X [ Y ) = FrX \ CY [ CX \ FrY4.5

Fr(X \ Y ) = FrX \ Y [X \ FrY:4.6

The proof of the relation 4.4 { 4.6 is obvious; e.g.

(4.6)1 :=X \ Y \C(X \ Y ) = X\Y \(CX[CY ) = FrX\Y [X\FrY := (4.6)2:

4.7. We have also the operator
 �

extX:=CX = C(
R
CX); this operator

 �

ext could

be taken as primitive because X =
 �

extCX .

4.8. The permutation C $� in any of the preceding operators f yields an operator,

say p � f ; one has p � extX:=CX:=
 �

ext = C
R
X , i.e.

R
X = Cp � extX ,

p�
R
X:=CX = extX.

5. A great number of phenomena could give rise to self-mappings of power
sets.

5.1. Example. If R is any binary relation on E, i.e. if R � E � E, then for any
x 2 E one has the set R[x]:= fy ) y 2 E; R(x; y)g; for every subset A � E let
R[A]:=

T
x2A

R[x]. The set R[A] is called the polar of A with respect to R. So we

have a de�nite mapping

5.2 R : A 2 PE ! R[A] 2 PE:

This mapping is decreasing; moreover, if R is symmetric, then its square is exten-
sive, i.e., it satis�es f2X � X for every X � E.

5.2.1. One can prove the converse also: if f : PE ! PE is decreasing and if ff is
extensive, then the relation

5.2.2 xRy () y 2 fa

is a symmetrical relation in E (v. J. Schmidt [10], x8).
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5.3. Let R be any binary symmetrical relation in E; for anyM � E let HM := fx )
x 2 E&MR0xg i.e. :8m2M (m;x) 2 S; one has again a self-mapping of PE.

5.4 Ordered sets, ordered spaces.

5.4.0 In connexion with a given (quasi-) ordered set (E;�) one has several kinds of
ordered spaces (E; f) with the same set E and tied in a certain way with �.

5.4.1. Theorem. If a topological T2-space (E;
�) is equipped with an order (E;�),

such that every middle interval of (E;�) is a nonlacunary chain and the given
topology is equivalent to the open interval topology of (E;�), then the half-cones
[p; �), (�; p] are closed sets. Either of the conditions: T2 and non lacunarity are
indispensable.

Proof. Let us assume that, on the contrary, there exists a point p 2 E such
that the corresponding right cone P :=[p; �) is not closed, i.e., there exists a point
x 2 E such that x 2 P n P ; thus x < p or xkp.

5.4.1.1. Case x < p. Every neighborhood V (x) contains at least one point of P ;
since the topology is equivalent to the open interval topology we may assume in
particular that V (x) is of the form (b; p)< and that there would be a point q 2 P

in the same interval i.e., b < q < p-absurdity, because p � P ; thus p � q.

Case xkp. Since x 2 P n P , one has x 2 P 0:=DP .

5.4.1.2. Subcase: x is not isolated in P from left, i.e., the set P (�; x) has no last
member: for every a 2 E such that a < x there exists a point b 2 P such that
a < b < x; now, b < x with b 2 P , i.e., p � b would imply p < x, contradicting xkp.

5.4.1.3. Subcase: x is isolated from left in (P;�). We claim that � 6= E(x; �) �
E(p; �). Now, E(x; �) 6= � because x is a right limit point of P . Therefore, if
x < z 2 E, there is a y 2 P such that x < y < z and consequently z 2 P . Again,
by our supposition, the intervals E(x; z):=B, E(p; z):=C are chains; B is a proper
terminal part of C; so we have the corresponding cut C n BjB; since B has no
�rst member and since, by our supposition, C is without any gap, C nB has a last
member, say x0. One has x0 2 P , x non 2 P ; so the distinct points x and x0 would
be both right limit points of a same chain B; therefore any V (x) would meet any
V (x0), which contradicts the assumed T2-property of the space. This proves that
(E;�)[a; �) is closed. Q.E.D.

5.4.1.4. Applying the last property to the dual order set (E;�) one obtains the
statement that the left half-cone (E;�)(�; p] is also closed. Q.E.D.

The following examples of spaces R0 and R00 show that non-lacunarity and
T2 are indispensable in the wording of 5.4.1.

5.4.1.5. R0 is obtained from R (reals) on replacing the ordinary order relation
� by the following reorganizations of (R;�) : R(�; 0)k0 < R(0; �); here the chain
(�; 0)[ (0; �) presents a gap because the remaining member 0 is kb for every negative
real b; again 0 2 Cl(b; �) because in particular 0 2 Cl(0; �) but 0 62 R0(b; �).

5.4.1.6. The space R00 is obtained from (R;�) by adjoining a new object 00 such
that (�; 0]k00 < (0; �): in the space R00 the distinct points 0 and 00 are not separated:
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V (0)\V (00) 6= � holds identically; if b < 0, then again the halfcome R00[b; �) is not
closed because it does not contain its limit point 00.

5.4.1.7. Corollary. Let (E;�) be a pseudotree (rami�ed set), i.e. such that for
every x 2 E the set (E;�)(�; x):= fy ) y � x; y 2 Eg is a chain; if the subchains
of (E;�) are without gap and if the ordered space (E;�) is T2 and de�nable by
means of open intervals, then for every x 2 E the half-cones (E;�)(�; x), (E;�
)[x; �):= fy ) x � y 2 Eg are closed.

5.4.2. A variant of real numbers. Let S � R; let every s 2 S be replaced biuniquely
by an object s+ in such a way that R(�; s) < s+kR(s; �) and fs+ ) s 2 Sg:=S+ is
an antichain. So one obtains an ordered set (R(S);�) which is dual to a pseudotree;
for every s 2 S we have a maximal chain R(�; s)[R(s; �) presenting a gap (�; s)k(s; �).

5.4.2.1. A corresponding construction (E(S);�) for any (E;�) and any S � E is
obvious. It repays to study such ordered spaces.

5.4.3. We considered also the following cone condition CC for ordered spaces (E;�):

CC For every point p 2 E one has

(E;�)(�; p) \ Cl(p; �) [ ClE(�; p) \ E(p; �) = �:

Of course, interval topologies on (E;�) satisfy CC.

6. Graphs and topologies. Any quasi-ordered set is a particular kind of a
graph. For any graph (G;R) (thus R � G�G) one may consider several topological
spaces (G;�) in particular under the condition that R is a closed set in the space
(G;�)� (G;�).

7. Distance. Abstract distance. The notion of distance d(x; y) is of
fundamental importance in Mathematics and in Applications, and goes back to
Thales; M. Fr�echet allowed the arguments x and y to run through any abstract set
E. -D. Kurepa [5,6,7] allowed d to run through any structure M ; the transfer of
elementary geometrical considerations to this general situation of M -spaces, yields
by force, uniform spaces and any topological space; in other words, abstract distance
spaces coincide with topological spaces.

8. Limit considerations. They are basic for topology; the notion of limit
evolved slowly and is tied with Zeno's paradoxes, exhaustion, Arch'medes consid-
erations, etc. Let us quote the following text.

8.1. A quotation from Newton. \Ultimae rationes illae quibuscum quantitates
evanescunt, revera non sunt rationes quantitatum ultimarum, sed limites ad qu-
os quantitatum sine limite decrescentium rationes semper appropinquant, et quas
propius assequi possunt quam pro data quavis di�erentia, nunquam vero transgre-
di, neque prius attingere quam quantitates diminuuntur in in�nitum." ("Ultimate
ratios in which quantities vanish, are not, strictly speaking, ratios of ultimate quan-
tities, but limits to which the ratios of these quantities, decreasing without limit,
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approach, and which, though they can come nearer than any given di�erence what-
ever, they can neither pass over not attain before the quantities have diminished
inde�nitely" Newton, Philosophiae Naturalis Principia, End of Section I, London
1687, p. 3610�16).

8.2. This quotation is very important because the idea that was expressed in it
ts an important starting point for topological spaces. The idea of a limes (limit)
was introduced intuitively and since then was tremendously extended by Fr�echet,
Moore,dots; Filter theory with applications is a chapter of involved convergence
considerations.

8.3. Probably, such a most general convergence approach is the best topological
approach because the approaching constitutive parts are more and more complete
approximations of the feature involved.

9. There are other approaches to topological spaces (for example, using
topoi).

10. Problem. For each approach we can consider problem of its scope.
In particular it is of interest to examine whether a given approach to topological
spaces is universal in the sense of yielding every topological space.
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