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TWO RESULTS ON ASSOCIATIVITY OF COMPOSITE

OPERATIONS IN GROUPS

Sava Krsti�c

Introduction

Every group word w(x; y) in variables x, y and elements of a given group
G determines a binary operation on G. Considerable attention has been given to
investigating when such an operation brings a new group structure on G; see [1],
[2] and [3]. In some cases the problem when w(x; y) is only associative is solved
too; see [4] and [5]. The two theorems we are going to prove in this article are
related to this problem of associativity.

The theorem of Hanna Neumann ([4]) states that all associative operations
w(x; y) in the case of a free G are of one of the following forms:

a; x; y; xay; yax;

where a is an arbitrary element of G. In the �rst part of this article we generalize
this result. Theorem 1 shows that operations of the forms listed above are the only
possible (except trivial cases) when we requirew(x; y) to satisfy not the associativity
law, but any consequence of it (any weakened associativity law).

In the second part of the article we determine all associative operationsw(x; y)
in the case of G free nilpotent of class two.

Part one

Terms and trees. We begin with a few comments on terms and trees of a
special kind which stand in 1{1 correspondence with terms. The terms will be built
of variables x; y; z; x1; x2; . . . and a binary operation symbol Æ. The tree T = T (t)
corresponding to the term t takes shape in a well-known way, following the inductive
de�nition of terms. If t is of the simplest form t = xi, then T (t) is a single vertex
labeled with xi. If t = t1 Æ t2 and Ti = T (ti) (i = 1; 2), then T (t) = T1 ÆT2, the tree
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obtained from the union of trees T1 and T2 by adding a new vertex v (base vertex
of T1 Æ T2) and two edges vv1 and vv2, �rst labeled with �, second with �. Here v1
and v2 are base vertices of T1 and T � 2. See �g. 1

So, all vertices of degree 1 (they will be called peaks) of our term-trees are
labeled with variables occurring in corresponding term. Edges are also labeled, but
with � and � { these letters symbolize \left" and \right" when drawing trees. For
example, the labeled tree corresponding to the term x1 Æ ((x2 Æ (x3 Æ x4)) Æ x5) is
shown on �g. 2.

All terms appearing in the sequel have a feature that no variable occurs more
than once in them. Thus the peaks of trees we consider are labeled with di�erent
variables. The word obtained by reading successive labels of passed edges on the
path from the base vertex of T to the peak (labeled with) xi will be called trace of

xi in the tree T and denoted by tr T (xi), or simply tr (xi). For example, in �g. 2
tr (x) = ���� = ���2. The following is almost obvious.

Lemma 1. If in the peaks o� the trees T1 and T2 the same variables x1; . . . ; xo
stand as labels and if tr T1(xi) = tr T2(xi) for every i, 1 � i � n, then T1 = T2.

Suppose the tree T and the term t correspond in the way described above.
Then for every subterm to of t the correspoding tree T0 is a subtree of T . Especially,
if xi1 ; . . . ; xir are labels of some peaks of T , then T [xi1 ; . . . ; xir ] will denote the
subtree of T corresponding to the minimal subterm of t which contains all variables
xi1 ; . . . ; xir .

Suppose that terms t1 and t2 are obtained by placing brackets in the word
x1Æx2Æ� � �Æxn. (Equivalent formulation: in both T (t1) and T (t2) we have tr (x1) �
tr (x2) � � � � � tr (xn), where � is the lexicographical ordering on the set of words
over the alphabet f�; �g, induced by � � �). Any equality of the form t1 = t2 will
be called the weakened associativity law for Æ. Trivial laws are those in which t1
and t2 are literally equal, that is, those for which T (t1) = T (t2) holds.

Types. Let F be a free group, X = fx1; x2; . . . g and let

u = a0x
"1
i1
a1x

"2
i2
a2 . . .x

"r
ir
ar (a� 2 F; " 2 Z)

be the reduced form of the element u of the free product F � hXi. The type of
the element u is the word �(u) = �1 . . . �s obtained from the word xi1 . . .xir by
amalgamating successive equal letters in it. For example, �(x�11 x23ax

2
3b) = x1x3.

By de�nition the type �1 . . . �r, (that is, any word over X) is realized in the element
u 2 F � hXi i� �1 . . . �r is a subword of �(u). As for the realization of types, we
shall need only the following simple
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Lemma 2. Let w(x1; x2) = a0x
e1
i1
a1 . . .x

"r
ir
ar (a� 2 F; "� 2 Z; i� 2 f1; 2g) be

the reduced form of the element w(x1; x2) 2 F � (x1; x2) and let u1; u2 be elements

of F � hXi such that no xi 2 X occurs in the reduced forms of both u1 and u2.
Denote by w1 = w(u1; u2) the element of F � hXi obtained by substituting u1 and

u2 for x1 and x2 in w(x1; x2). Then all types �(u"�i� ) (� = 1; . . . ; r) are realized in

w1.

Operations de�ned by group words. If in the word w(x1; . . . ; xN ) 2
F �hXi we let x1; . . . ; xn be variables taking values in F , then w(x1; . . . ; xn) de�nes
an n-ary operation on F . The following easily provable fact should be noticed: in
the case of the free group F the operation w(x1; . . . ; xn) takes the constant value 1 if
and only if w(x1; . . . ; xn) as an element of the group F �hXi is equal to the identity
element of that group. This fact is implicitly used whenever we do not distinguish
between equality of operations and equality of corresponding group words (see, for
example, the �rst part of the proof of Theorem 1).

Further, whenever we refer to types of terms or realizations of types in terms
we think of interpreted terms, that is, those in which the operation symbol Æ is
replaced by an operation of the form w(x; y). The interpretation will be always
clear from the context. For example, if w(x; y) = xyx�1, then the term (x Æ y) Æ z
after the interpretation of Æ by w(x; y) becomes xyx�1 zxy�1x�1 and is of the type
xyxzxyx.

Theorem 1. Let t1(x1; . . . ; xn) = t2(x1; . . . ; xn) be a non-trivial weakened

associativity law and let w(x; y) be a group word in x, y and the elements of a free

group F, in whose reduced form both x and y occur. If the operation x Æ y = w(x; y)
satis�es the law t1 = t2, then w(x; y) = xay or w(x; y) = yax, for some a 2 F .

Proof. We shall limit our considerations to the case when in the word w(x; y)
the symbol x occurs before the symbol y, that is, when the type �(w(x; y)) begins
with x. If it is not so, we can take the operation w0(x; y) = w(y; x); �(w0) begins
with x and w0(x; y) satis�es the law t01 = t02, where t

0
1 and t

0
2 are \mirror images" of

t1 and t2. From the conclusion that w0(x; y) is of the form xay or yax it immediately
folows that w(x; y) is also of one of these forms.

First step. Assumption of non-congruence of subterms of t1 and t2. Let
T1 = T (t1) and T2 = T2(t2). We are going to prove that in Theorem 1 the terms
t1 and t2 may be assumed to satisfy the following condition:

(C) T1[xi; . . . ; xj ] 6= T2[xi; . . . ; xj ]

for every i; j (1 � i < j � n).

Lemma 3. Let u(z) 2 F � hzi and v(y1; . . . ; ym) 2 F � hy1; . . . ; ymi. If

u(v(y1; . . . ; ym)) = 1 in F � hy1; . . . ; ymi, then u(z) = 1 in F � hzi.

Proof of Lemma 3. Let v(y1; . . . ; ym) = av0(y1; . . . ; ym)b, where a; b 2 F and
the extreme symbols of v0 are some of the yi. Let also u(z) = u(azb), and suppose
that u(z) 6= 1 in F � hzi. Then u0(z) 6= 1 too. If in the reduced form u0(z) =
a0z

"1a1z
"2a2 . . . z

"rar we put v0(y1; . . . ; ym) instead of z, the symbols a0; . . . ; ar
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will remain uncancelled. Thus, u0(v0(y1; . . . ; ym)) 6= 1, But u0(v0) = u0(a�1vb�1) =
u(v), and so we get u(v(y1; . . . ; ym)) 6= 1, q.e.d.

Suppose now the condition (C) does not hold for terms t1 and t2, that is, for
some i, j, T1[xi; . . . ; xj ] = T2[xi; . . . ; xj ]; let t(xi; . . . ; xj) be the term corresponding

to these subtrees. From the equality t1t
�1
2 = 1 by means of Lemma 3 we obtain

t1t
�1
2 = 1 where t1 and t2 are terms in x1; . . . ; xi�1; z; xj+1; . . . ; xn, obtained by

putting z instead of t(xi; . . . ; xj). The number of variables in the law t1 = t2 is less
than in t1 = t2 and so we can arrive, repeating the process above several times, to
a law satis�ed by the operation x Æ y = w(x; y) for which the condition (C) holds.
Thus, nothing is lost if we assume that this condition holds already for the law
t1 = t2.

Second step. The type of w(x; y) is xy. Suppose the contrary: the type xyx
is realized in w(x; y). Clearly, there exists an index k (1 � k < n) such that
T2[xk; xk+1] = T (xk; xk+1). Let T

0 and T 00 be subtrees of T1 such that T 0 Æ T 00 =
T1[xk; xk+1]. In the peaks of T 0 are the variables xk+1; . . . ; xk (i � k) and in the
peaks of T 00 are the variables xk+1; . . . ; xj (j � k + 1).

Now we are going to prove T 0 = xk. Assuming the contrary we see that
in T 0 there exists a subtree T 000 Æ xk , where the variables in the peaks of T 000 are
xi+r ; . . . ; xk�1 (r � 0). If t0 and t000 are the terms which correspond to the trees
T 0 and T 000, then t0 = w(t000; xk). Since the type xyx is realized in w(x; y), Lemma
2 implies that a certain type �xk� is realized in t0, where � and � are variables
occurring in t000 (some of xi+r ; . . . ; xk�1). Using the observation that if �xk� is
realized in t, then in any power of t�xk� or �xk� is realized, several applications
of Lemma 2 lead us to the conclusion that in t1 one of the types �xk� is also
realized, where � and � are variables from t000. Now let us look at the situation in
t2; w(xk ; xk+1) is a subterm of it. In the type of w(xk ; xk+1) to every occurrence
of the letter xk at least one neighbor is a letter xk+1 and the same can be said for
the term t2 (again we refer to Lemma 2). So in t2 no type �xk� can be realized for
�; � 6= xk+1. By the contradiction just obtained we have proved T 0 = xk.

If the type yxy were realized in w(x; y), in the same way as above, we could
deduce T 00 = xk+1 and then T1[xk; xk+1] = T (xk Æ xk+1) = T2[xk; xk+1] { contrary
to the condition (C). Thus we are left with the only possibility that w(x; y) is of
type xyx. Let t1[xk ; xk+1], t2[xk ; xk+1] and t

00 be the terms corresponding to the
trees T1[xk ; xk+], T2[xk ; xk+1] and T

00. We have �(t1[xk; xk+1]) = T�(w(xk ; t
00)) =

xk!xk and �(t2[xk ; xk+1]) = xkxk+1xk, where the letters occurring in ! are just
the variables from t00, namely xk+1; . . . ; xj (j � k+2). Arguing in a manner similar
to that of the preceding paragraph we can deduce that to every occurrence of xk+1
in the type of t2 both adjacent symbols are xk and that in the type of t1 this is
not the case. This contradiction breaks the assumption we have started with, so
�(w(x; y)) = xy.

Third step. w(x; y) = bx�1ay�1c for some a; b; c 2 F . According to what we
have already proved in the previous step we have now

(1) w(x; y) = a0x
�1a1x

�2 . . . ap�1x
�papy

�1 ; ap+1y
�2 . . . ap+q�1y

�qap+q ;
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where p; q � 1, �i; �j 2 Z and ai are elements of F , all non-trivial except perhaps
a0; ap and ap+q .

Let us de�ne the functions �j(xi) and �j(xi) (j 2 fl; 2g; 1 � i � n) as the
numbers of occurrences of letters � and � in the words tr j(xi) = trTj(xi). From
the fact that w(x; y) is of the form (1), by induction on the complexity of terms,
with a simple analysis of possible cancellations that appear during the process of
building terms, it follows that the number of syllables of the form x"i in the reduced
form of the term tj is equal to

p�j(xi)q�j (xi):

Since t1 = t2

(2) p�1(xi)q�1(xi) = p�2(xi)q�2(xi)

must hold for every i; 1 � i � n.

In order to prove p = 1 assume the contrary: p > 1. Now if tr j(xi) =
�j��

"j ("j � 0, �j - words over the alphabet f�; �g), then tr j(xi+1) = �j��
�j for

some �j � 0. Making use of this fact together with (2) we can proceed by induction
and prove tr 1(xi) = tr 2(xi) for every i, 1 � i � n. By means of Lemma 1 these
equalities imply T1 = T2, which cannot hold because of the assumed ful�lment of
condition (C).

Thus we have proved p = 1 and the proof of q = 1 goes in the same manner.
So we have w(x; y) = bx�ay�c, for some a; b; c 2 T and �; � 2 Z n f0g.

The sum of exponents of xi in the term tj is equal to

��j (xi)��j (xi):

Assuming j�j > 1, in the same way as in the proof above we can arrive to equalities
tr 1(xi) = tr 2(xi) for every i and hence to the absurd conclusion T1 = T2. By
this the assumption j�j > 1 fails. So we must have j�j = 1, and quite analogously
j�j = 1.

It remains only to discuss four cases which arise when � and � take the values
�1.

Fourth step. Case 1: w(x; y) = bxayc. If w(x; y) is of this form, then

t1 = t2 = a0x1a1x2a2 . . .xnan;

for some a0; . . . ; an 2 F .

Let i and j be the smallest numbers such that xi Æxi+1 is a subterm of t1 and
xj Æ xj+1 a subterm of t2. Let us suppose i < j; i = j does not hold because of the
condition (C). The tree T2[xi; xi+1] is now of the form xi ÆT

0, where in the peaks of
T 0 stand as labels the variables xi+1; . . . ; xi+r, r � 2. The term t0 which correspond
to the tree T 0 begins with bxx+1 and it follows that the term t2[xi; xi+1] begins with
bxiabxx+1. On the other hand t1[xi; xi+1] = bxiaxi+1c. It follows that in t1 between
xi and xi+1 stands a, and in t2 between these variables stands ab. From this we
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derive b = 1 and the proof for c = 1 is quite analogous. Thus, w(x; y) = xay and
such an operation clearly satis�es all weakened associativity laws.

Case 2: w(x; y) = bxay�1c. We shall prove only that the operation w(x; y) =
xy�1 does not satisfy any non-trivial weakened associativity law, the same result
for all operations of the form bxay�1c being implied by this one. The following
observation makes this implication clear: if w(x; y) satis�es some law t1 = t2, then
w0(x; y) satis�es the same law too, where w0 is obtained by identifying all elements
of F in w with 1.

Let w(x; y) = xy�1 and let i; j and T 0 be as in Case 1. Since t1[xi; xi+1] =
xixi+1, it follows that in the term t1 the variables xi and xi+1 also stand in adjacent

places. On the other hand, t2[xi; xi+1] = xit
0�1, where t0 begins with xi+1 and does

not end with that symbol. So in t2[xi; xi+1], and therefore in t2 too, the variables
xi and xi+1 do not occur in adjacent places. By this contradiction we are done
with Case 2.

Case 3: w(x; y) = bx�1ayc. Analogous with Case 2.

Case 4: w(x; y) = bx�1ay�1c. Again we are going to prove that the operations
we are dealing with do not satisfy non-trivial laws. With the same explanation as
in Case 2 it suÆces to consider only the operation w(x; y) = x�1y1. To reach
the absurd more simply let us suppose that between nontrivial trivial weakened
associativity laws satis�ed by x�1y�1t1 = t2 is the one which involves the minimal
number of variables.

The initial symbol of both t1 and t2 is that x
�1
k for which tr (xk) in the trees

T1 and T2 are of the form ���� . . .�� or ���� . . .��� (words beginning with �,

in which any two adjacent letters are di�erent). Taking into account the
exponents with which the variables occur in t1 and t2 we see that the initial symbol
in these terms is xk or x�1k according to what the last letter in the corresponding
trace of xk is: � of �. Thus, the last letters in tr 1(xk) and tr 2(xk) should be the
same, say �, the other case being quite similar to consider.

Let T 01 and T 02 be the subtrees of T1 and T2 such that T 01 Æ xk and T 02 Æ xk
are also subtrees of T1 and T2. The variables in the peaks of T 01 are xj ; . . . ; xk�1
(xi � k � 1) and those in the peaks of T 02 are xj ; . . . ; xk�1 (j � k � 1). Now t1
begins with xk and the next k � i symbols in it are x�1i ; . . . ; x�1k�1, in some order.
The last but one letter of tr 1(xk) being �, there exists a subtree T

00
1 of T1 such that

(T 01 Æxk) ÆT
00
1 is a subtree of T1. The variables in the peaks of T 00 are xk+1; . . . ; xi0 ,

i0 � k + 1 (see �g 3). Then the (k � i+ 2)th symbol in t1 is one of x
�1
k+1; . . . ; x

�1
i0 .

If i > j could hold, then since k � i + 2 � k � j + 1, the (k � i + 2)th symbol
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in t2 would be one of x�1j ; . . . ; x�1k�1, contrary to the conclusion of the. preceding
sentence. In the same way the possibility i < j fails, so we have i = j.

The initial segments of k � i + 1 = k � j + 1 symbols in t1 and t2 are xkt
0
1

and xkt
0
2, where t

0
1 and t

0
2 are the terms corresponding to the trees T 01 and T

0
2. So

t01 = t02 must hold and the number of variables occurring in this law is less than
in the law t1 = t2t

0
1 = t02 is also non-trivial, because T 01 6= T 02 as a consequence of

the condition (C) assumed to hold for t1 = t2. Thus we fell in contradictions with
the assumption of minimality of the number of variables in t1 = t2. Hence the
operation x�1y�1 does not satisfy any non-trivial weakened associativity law.

This �nishes the proof of Theorem 1.

Remark on the case when w(x; y) does not depend on both variables. To
complete the discussion it remains to consider which weakened associativity laws
are satis�ed by the operations of the forms x Æ y = w(x) and x Æ y = w(y); the
operations x Æ y = const. clearly satisfy all the laws.

Assume that x Æ y = w(x) satis�es the law t1 = t2 and let m1 and m2 be
the numbers such that tr i(x1) = �mi (i = 1; 2). Then ti = wmi(x1), where w

m

denotes the operation w iterated n times. If m1 = m2, then clearly all operations
x Æ y = w(x) satisfy the law t1 = t2. We have still to analyze the possibility
m1 6= m2; for the sake of de�niteness let us supposem1 < m2. From t1 = t2 we infer
wm2�m1(wm1 (x)) = wm1(x) and hence, by means of Lemma 3, wm2�m1(wm1(z)) =
z for every z 2 F . It is easy to prove that this equality holds only if w(z) = z or
w(z) = z�1. The operation x Æ y = x satis�es all weakens associativity laws, while
x Æ y = x�1 satis�es those for which the numbers m1 and m2 are both odd or even.

The �nal conclusion on satisfying weakened associativity laws by composite
operations in free groups is the following:

| the operations x Æ y = a, x, y, xay, yax (a 2 F ) satisfy all the laws;

| the operations x Æ y = x�1, y�1 satisfy those laws for which the lengths of
the traces tr 1(x1) and tr 2(x1), or tr 1(x2) and tr 2(x2), are at the same time
odd or even;

| the operations xÆy = w(x), w(y) satisfy the laws for which tr 1(x1) = tr 2(x1),
or tr 1(xn) = tr 2(xn) holds.

Part two

Theorem 2. Let G be a free nilpotent group of nilpotency class 2. If the

operation x Æ y = w(x; y) is associative, then w(x; y) is of one of the following

forms:

a[(a; x)(x; y)(y; a)]k ; x; y; xay[(x; a)(x; y)(a; y)]k ;

where (�; �) denotes the commutator ��1��1�� and a 2 F and k 2 Z are arbitrary.

Proof. Let G = F=F3, where F is a free group and F = F1; F2; F3; . . . its
lower central series. Let w(x; y) 2 F 0 = F � hx; yi. Our goal is to �nd all w(x; y)
such that

(1) w(w(x; y); z) = w(x;w(y; z)) mod F3
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holds for every x; y; z 2 F .

From w(w(x; y); z) � w(x;w(y; z)) mod F2 after simple considerations it
follows that

w(x; y) � w(x; y) mod F2;

where w(x; y) is of one of the following forms:

a; x; y; xay(a 2 F )

(These are in fact all accosiative operations on the free Abelian group F=F2). Now
we have

w(x; y) � w(x; y) (x; y) mod F3;

where w is of one of the above forms and  (x; y) is an element of F 0
2. We have to

�nd all  (x; y) for each of the above possibilities, provided w(x; y) is associative
modulo F3.

Case 1: w(x; y) = a. From the relations (1) and

w(w(x; y); z) � a (a (x; y); z) mod F3;

w(x;w(y; z)) � a (x; a (y; z)) mod F3

and the simple observation that

 (x�; y) �  (x; y�) =  (x; y) mod F3

holds for all � 2 F2, x; y 2 F , it follows that

(2)  (a; z) �  (x; a) mod F3

holds for all x; z 2 F . As an element of F 0
2(x; y) is of the form

 0(x; y) � (x; b)(y; c)(x; y)k mod F3;

where b; c 2 F and k 2 Z. Now the relation (2) becomes

(a; b)(z; c)(a; z)k � (x; b)(a; c)(x; a)k mod F3:

Putting here x = z = 1 we obtain (a; b) � (a; c) and

(z; c)(a; z)k � (x; b)(x; a)k mod F3;

that is,
(z; ca�k) � (x; bak) mod F3:

The last relation holds only for c = ak and b = a�k so we get

 (x; y) � (x; a�k)(y; a)k(x; y)k

� [(a; x)(x; y)(y; a)]k mod F3:

It could be immediately checked that for any a 2 F and k 2 Z

w(x; y) = a[(a; x)(x; y)(y; a)]k
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satis�es the associativity law (1).

Case 2: w(x; y) = x or w(x; y) = y. For w(x; y) = x we have

w(w(x; y); z) � x (x; y) (x (x; y); z) mod F3;

w(x;w(y; z)) � x (x; y (y; z)) mod F3;

which together with (1) implies  (x; z) � 1 mod F3, so w(x; y) = x mod F3.
The other possibility w = y gives the unique solution w(x; y) � y mod F3.

Case 3: w(x; y) = xay. Now we have

w(w(x; y); z) � xay (x; y)az (xay (x; y); z) mod F3;

w(x;w(y; z)) � xayaz (y; z) (x; yaz (y; z)) mod F3:

Putting this in (1), after considerations similar to those in Case 1 we obtain

 (x; a�1) �  (a�1; z) mod F3;

for every x; z 2 F . Just as in Case 1, hence we get

 (x; y) � [(x; a)(x; y)(a; y)]k mod F3;

for some k 2 Z. Again we immediately check every w(x; y) of the form

w(x; y) = xay[(x; a)(x; y)(a; y)]k (a 2 F; k 2 Z)

satis�es the relation (1).

This �nishes the proof of Theorem 2. It remains only to note that

yax = xay[(x; a)(x; y)(a; y)]�1

and that all operations of the form xay[(x; a)(x; y)(a; y)]k satisfy the group postu-
lates { the identity element being a�1 and a�1x�1a�1 the inverse of x.
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