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ON N-DIMENSIONAL IDEMPOTENT MATRICES

Jin Bai Kim and James E. Dowdy

An n x n matrix A = (a;;) will be called a 2-dimensional matrix of order n.
We shall study 2 m-dimensional idempotent matrices of order n with respect to an
associative matrix product.

1. Introduction. We shall denote the set of all n x n matrices over a field
F by Ms ,(F) and the set of all n x n X --- x n = n™ matrices over F' by M,, (F).
Any matrix A = (aij..) in My, o(F) will be called an m-dimensional matrix of
order n. For a determinant of an m-dimensional matrix, we refer [2, 3, 6 and 7].
Let A = (@iyis...ion) a0d B = (bj, js..jnr. ) be members of Moy, ,,(F). We define a
matrix product AB = C = (Ckyky...ks,, ) as follows:

n n n
ck1k2...k2m:E E E ks koo ko by bzt Db 1t Romg K2 -

t1=1ta=1 tm=1

This matrix product is associative (see [3]) and with respect to this matrix product
AB = C, Moy, o(F) forms a semigroup (and aring). A is an idempotent if AA = A.
We shall count the number of idempotents in the semigroup Map, ,(F'), where F
is a finite field, and we shall classify the idempotents.

2. The number of idempotents. Let S be a semigroup and let a,b € S.
We define aLb (aRb) to mean that a and b generate the same principal left (right)
ideal of S. If aLb, we say that a and b are L-equivalent. By L, we mean that the
set of all elements of S which are L-equivalent to a. The join of the equivalence
relations L and R is denoted by D. If X is a subset of the semigroup S, then we
define E(X) = {z € X : zz = z}. We need the following lemma.
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LEMMA 1 [5, Lemma 5]. Let D, be the D-class of rank r in the semigroup
k-1

My n(F). Let |F| = p. Define [p*] = (p* —1)(*—p) ... 0" —p* 1) = [[ 0" —p).

Then |E(Dy)| = [p"]/p"|lp"™"- Let t(r) = [p"]/[p"][p"~"]. -

THEOREM A. The number of all idempotent matrices in Moy n(F) is equal
to t:

Proof. If A = (aij..x) € Mam,n(F) we identify A as A" = (a};) € Mz ,m (F).
Then applying Lemma 1, we obtain the desired result.

Let S be a semigroup and let a € S. We define V(a) = {z € S : aza = a and
zax = x}. We need the following lemma to prove Theorem B.

LEMMA 2 [4, Theorem 1]. If A € M> ,(F), then the cardinal number of the
inverse set V(A) is equal to |F|*"("~") where r is the rank of the matriz A.

Let r be an integer such that 0 < r < n™. We have the following. (We
assume that S = Moy, »(F) and |F| = p).

THEOREM B. If A € D,, then |V (A)| is given by t, where t = p>(»" =7,

Proof. In the semigroup Moy, »(F') there are n™ + 1 D-classes D, of rank
r. (See the proof of Theorem A). Applying Lemma 2 and replacing n by n™ in
|F|?r(»=7) | we obtain the desired result. (Note that |F| = p).

3. Classification of idempotents. We define V,.(n) = {(i1,i2,...,i,) :
i; are positive integers such that 1 < i; < n}. Let A = (aij,.x) € Moy n(F).
For any entry a;;.  of A, there exists m € Va,,(n) such that (ij...k) = m; we
write a;j..r = ar. For an element 7 = (my,m2,...,my) € Viu(n), we write 7m
to mean that 7w = (71,72, .. ., T, T1, T2, ..., Tm) € Vam(n). We define a matrix
E; = (aij..1;) as follows: ar =1 and a, = 0 for all u € Vom(n) such that = # p.
We can see that Ey) is an idempotent (A € V,(n)) and we may call Eyy a primitive
idempotent. Define I = Z E)). Then we can see that TA = AI = A for all

AEVar(n)
A € Mypmn(F). We denote the zero matrix by 0. Then for A = (aj;...r,) we have
A= Z aEn (ar € F). Define (A), = a, as the m-entry of A, and define
TEVam(n)
D(A) ={X € Vi(n) : (A)ax # 0}.

Types of idempotents. Let A be an idempotent. A is called an idempotent of
type I if either axy =1 and ay, = 0 (A # p) for all A € D(A) or if ayy = 1 and
apx =0 (p # A) for all A € D(A). A is called an idempotent of type IT if A is not
an idempotent of type I and if ay,, = 1.

An idempotent A which is neither of type I nor type II will be called an
idempotent of type I11. We assume the zero matrix 0 is an idempotent of type I.
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We consider the idempotents of type I. Let Fj, = {A\1, A2,...,Ar} be a non-
empty subset of V,,,(n). Let U; be a subset of V,,,(n) \ F, = {z € Vi(n) : x & Fy},
(t=1,2,...,k). Then:

A= (EMM + Z .Tﬁ)\lE'ﬁ)\l) + (E)\2)\2 + Z xﬂA2E7r>\2> 4ot

melUy meUs

+ (Exkxk + ) T, Emk)

€Uy,

and

B = (EA1A1 + Z xAlﬁEA1ﬂ> + (E)\QAQ + Z m)\QWE)\Qﬂ—> + +

el meUz
+ (Exkxk + ) HJAWEAM>
€Uy,
where z,, € F(p € Vo (n)). Now we can state the following theorem.

THEOREM C. Every idempotent of type I is either of the form A or the form
B. The number of all idrmpotents of type I in My, o(F) is given by t:

. n m_ n
(=23 ()0 -2, = IF),

k=0

Proof. Let U,V,U; and V; be subsets of the set V,,(n) \ Fj, where F}, =
{A, A2, ., Ak} CVi(n). Let C = Ex,z, + Exoxe + -+ Exoags

k k
D= E : Tximi Eximis E= E Tpixi B

m; €EU; 1y €V
and G = Zm‘“’EW. Assume that X = C+ D+ G and Y = C + E+ G are
neU
veEV

idempotents of type I. The following is the product table for C, D, E and G.

C D E G
¢ ¢ D 0 0 In the table, DE = D’ means that DE
D 0 0 D D takes the form D but D' # D. Similarly for E’
B B a0 0 and G'.
G 0 0 E &

Then from XX = X and YY = Y we have that X = C + D = B and
Y =C + E = A. We now consider the number ¢ of all idempotents of type I. We
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note that [V, (n)| = n™. The number of the ordered sets Fy is equal to (" ); the

number of all possible terms Z Tax; Erx; (1 =1,2,...k)
TeV;

Z Zxm Exr, in B) in A is equal to p*("" k),
meU;

In the expression of ¢, the factor 2 appears because of the two forms A and B and,
because we counted the number of terms Ey, x, + Ex,n, + -+ Ex, ), twice in the
first term for ¢, we must subtract 2" .

Remark. For 2-dimensional matrices, analogous results of Theorem A and
Theorem B are respectively Lemma 5 [5] and Theorem 1 [4]. For Theorem C,
we do not have any reference, but we find that ¢ in Theorem C is correct for
M>3(Z/(2)), where Z is the set of all integers and |Z/(2)| = 2. For M, 3(Z/(2)),
t = 44 from our D-class table of the semigroup.
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