ON N-DIMENSIONAL IDEMPOTENT MATRICES

Jin Bai Kim and James E. Dowdy

An $n \times n$ matrix $A=\left(a_{i j}\right)$ will be called a 2-dimensional matrix of order n. We shall study $2 m$-dimensional idempotent matrices of order n with respect to an associative matrix product.

1. Introduction. We shall denote the set of all $n \times n$ matrices over a field F by $M_{2, n}(F)$ and the set of all $n \times n \times \cdots \times n=n^{m}$ matrices over F by $M_{m, n}(F)$. Any matrix $A=\left(a_{i j \ldots k}\right)$ in $M_{m, n}(F)$ will be called an m-dimensional matrix of order n. For a determinant of an m-dimensional matrix, we refer $[\mathbf{2}, \mathbf{3}, \mathbf{6}$ and $\mathbf{7}]$. Let $A=\left(a_{i_{1} i_{2} \ldots i_{2 m}}\right)$ and $B=\left(b_{j_{1} j_{2} \ldots j_{2 m}}\right)$ be members of $M_{2 m, n}(F)$. We define a matrix product $A B=C=\left(c_{k_{1} k_{2} \ldots k_{2 m}}\right)$ as follows:

$$
c_{k_{1} k_{2} \ldots k_{2 m}}=\sum_{t_{1}=1}^{n} \sum_{t_{2}=1}^{n} \cdots \sum_{t_{m}=1}^{n} a_{k_{1} k_{2} \ldots k_{m} t_{1} t_{2} \ldots t_{m}} b_{t_{1} t_{2} \ldots t_{m} k_{m+1} \ldots k_{2 m}}
$$

This matrix product is associative (see [3]) and with respect to this matrix product $A B=C, M_{2 m, n}(F)$ forms a semigroup (and a ring). A is an idempotent if $A A=A$. We shall count the number of idempotents in the semigroup $M_{2 m, n}(F)$, where F is a finite field, and we shall classify the idempotents.
2. The number of idempotents. Let S be a semigroup and let $a, b \in S$. We define $a L b(a R b)$ to mean that a and b generate the same principal left (right) ideal of S. If $a L b$, we say that a and b are L-equivalent. By L_{a} we mean that the set of all elements of S which are L-equivalent to a. The join of the equivalence relations L and R is denoted by D. If X is a subset of the semigroup S, then we define $E(X)=\{x \in X: x x=x\}$. We need the following lemma.

[^0]Lemma 1 [5, Lemma 5]. Let D, be the D-class of rank r in the semigroup $M_{2 m, n}(F)$. Let $|F|=p$. Define $\left[p^{k}\right]=\left(p^{k}-1\right)\left(p^{k}-p\right) \ldots\left(p^{k}-p^{k-1}\right)=\prod_{i=1}^{k-1}\left(p^{k}-p^{i}\right)$. Then $\left|E\left(D_{r}\right)\right|=\left[p^{n}\right] /\left[p^{r}\right]\left[p^{n-r}\right.$. Let $t(r)=\left[p^{n}\right] /\left[p^{r}\right]\left[p^{n-r}\right]$.

Theorem A. The number of all idempotent matrices in $M_{2 m, n}(F)$ is equal to t :

$$
t=\sum_{r=0}^{n^{m}} t(r)
$$

Proof. If $A=\left(a_{i j \ldots k}\right) \in M_{2 m, n}(F)$ we identify A as $A^{\prime}=\left(a_{i j}^{\prime}\right) \in M_{2, n^{m}}(F)$. Then applying Lemma 1, we obtain the desired result.

Let S be a semigroup and let $a \in S$. We define $V(a)=\{x \in S: a x a=a$ and $x a x=x\}$. We need the following lemma to prove Theorem B.

Lemma $2\left[4\right.$, Theorem 1]. If $A \in M_{2, n}(F)$, then the cardinal number of the inverse set $V(A)$ is equal to $|F|^{2 r(n-r)}$, where r is the rank of the matrix A.

Let r be an integer such that $0 \leq r \leq n^{m}$. We have the following. (We assume that $S=M_{2 m, n}(F)$ and $\left.|F|=p\right)$.

Theorem B. If $A \in D_{r}$, then $|V(A)|$ is given by t, where $t=p^{2 r\left(n^{m}-r\right)}$.
Proof. In the semigroup $M_{2 m, n}(F)$ there are $n^{m}+1 D$-classes D_{r} of rank r. (See the proof of Theorem A). Applying Lemma 2 and replacing n by n^{m} in $|F|^{2 r(n-r)}$, we obtain the desired result. (Note that $|F|=p$).
3. Classification of idempotents. We define $V_{r}(n)=\left\{\left(i_{1}, i_{2}, \ldots, i_{r}\right)\right.$: i_{j} are positive integers such that $\left.1 \leq i_{j} \leq n\right\}$. Let $A=\left(a_{i j, \ldots k}\right) \in M_{2 m, n}(F)$. For any entry $a_{i j \ldots k}$ of A, there exists $\pi \in V_{2 m}(n)$ such that $(i j \ldots k)=\pi$; we write $a_{i j \ldots k}=a_{\pi}$. For an element $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) \in V_{m}(n)$, we write $\pi \pi$ to mean that $\pi \pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}, \pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) \in V_{2 m}(n)$. We define a matrix $E_{\pi}=\left(a_{i j \ldots k}\right)$ as follows: $a_{\pi}=1$ and $a_{\mu}=0$ for all $\mu \in V_{2} m(n)$ such that $\pi \neq \mu$. We can see that $E_{\lambda \lambda}$ is an idempotent $\left(\lambda \in V_{m}(n)\right)$ and we may call $E_{\lambda \lambda}$ a primitive idempotent. Define $I=\sum_{\lambda \in V_{M}(n)} E_{\lambda \lambda}$. Then we can see that $I A=A I=A$ for all $A \in M_{2 m, n}(F)$. We denote the zero matrix by 0 . Then for $A=\left(a_{i j \ldots k}\right)$ we have $A=\sum_{\pi \in V_{2 m}(n)} a_{\pi} E \pi(a \pi \in F)$. Define $(A)_{\pi}=a_{\pi}$ as the π-entry of A, and define $D(A)=\left\{\lambda \in V_{m}(n):(A)_{\lambda \lambda} \neq 0\right\}$.

Types of idempotents. Let A be an idempotent. A is called an idempotent of type I if either $a_{\lambda \lambda}=1$ and $a_{\lambda \mu}=0(\lambda \neq \mu)$ for all $\lambda \in D(A)$ or if $a_{\lambda \lambda}=1$ and $a_{\mu \lambda}=0(\mu \neq \lambda)$ for all $\lambda \in D(A) . A$ is called an idempotent of type $I I$ if A is not an idempotent of type I and if $a_{\lambda_{i} \lambda_{i}}=1$.

An idempotent A which is neither of type I nor type $I I$ will be called an idempotent of type $I I I$. We assume the zero matrix 0 is an idempotent of type I.

We consider the idempotents of type I. Let $F_{k}=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ be a nonempty subset of $V_{m}(n)$. Let U_{i} be a subset of $V_{m}(n) \backslash F_{k}=\left\{x \in V_{m}(n): x \notin F_{k}\right\}$, $(i=1,2, \ldots, k)$. Then:

$$
\begin{gathered}
A=\left(E_{\lambda_{1} \lambda_{1}}+\sum_{\pi \in U_{1}} x_{\pi \lambda_{1}} E_{\pi \lambda_{1}}\right)+\left(E_{\lambda_{2} \lambda_{2}}+\sum_{\pi \in U_{2}} x_{\pi \lambda_{2}} E_{\pi \lambda_{2}}\right)+\cdots+ \\
+\left(E_{\lambda_{k} \lambda_{k}}+\sum_{\pi \in U_{k}} x_{\pi \lambda_{k}} E_{\pi \lambda_{k}}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
B=\left(E_{\lambda_{1} \lambda_{1}}+\sum_{\pi \in U_{1}} x_{\lambda_{1} \pi} E_{\lambda_{1} \pi}\right)+\left(E_{\lambda_{2} \lambda_{2}}+\sum_{\pi \in U_{2}} x_{\lambda_{2} \pi} E_{\lambda_{2} \pi}\right)+\cdots+ \\
+\left(E_{\lambda_{k} \lambda_{k}}+\sum_{\pi \in U_{k}} x_{\lambda_{k} \pi} E_{\lambda_{k} \pi}\right)
\end{gathered}
$$

where $x_{\mu} \in F\left(\mu \in V_{2 m}(n)\right)$. Now we can state the following theorem.
Theorem C. Every idempotent of type I is either of the form A or the form B. The number of all idrmpotents of type I in $M_{m, n}(F)$ is given by t :

$$
t=2 \sum_{k=0}^{n^{m}}\binom{n^{m}}{k} p^{k\left(n^{m}-k\right)}-2^{n^{m}}, \quad(p=|F|)
$$

Proof. Let U, V, U_{i} and V_{i} be subsets of the set $V_{m}(n) \backslash F_{k}$, where $F_{k}=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\} \subset V_{m}(n)$. Let $C=E_{\lambda_{1} \lambda_{1}}+E_{\lambda_{2} \lambda_{2}}+\cdots+E_{\lambda_{k} \lambda_{k}}$,

$$
D=\sum_{\pi_{i} \in U_{i}}^{k} x_{\lambda_{i} \pi_{i}} E_{\lambda_{i} \pi_{i}}, \quad E=\sum_{\mu_{u} \in V_{i}}^{k} x_{\mu_{i} \lambda_{i}} E_{\mu_{i} \lambda_{i}}
$$

and $G=\sum_{\substack{\mu \in U \\ \nu \in V}} x^{\mu \nu} E_{\mu \nu}$. Assume that $X=C+D+G$ and $Y=C+E+G$ are idempotents of type I. The following is the product table for C, D, E and G.

	C	D	E	G
C	C	D	O	O
D	O	O	D^{\prime}	D^{\prime}
E	E	G^{\prime}	O	O
G	O	O	E^{\prime}	G^{\prime}

In the table, $D E=D^{\prime}$ means that $D E$ takes the form D but $D^{\prime} \neq D$. Similarly for E^{\prime} and G^{\prime}.

Then from $X X=X$ and $Y Y=Y$ we have that $X=C+D=B$ and $Y=C+E=A$. We now consider the number t of all idempotents of type I. We
note that $\left|V_{m}(n)\right|=n^{m}$. The number of the ordered sets F_{k} is equal to $\binom{n^{m}}{k}$; the number of all possible terms $\sum_{\pi \in V_{i}} x_{\pi \lambda_{i}} E_{\pi \lambda_{i}}(i=1,2, \ldots, k)$

$$
\left(\sum_{\pi \in U_{i}} x_{\lambda_{i} \pi_{i}} E_{\lambda_{i} \pi_{i}} \text { in } B\right) \text { in } A \text { is equal to } p^{k\left(n^{m}-k\right)} .
$$

In the expression of t, the factor 2 appears because of the two forms A and B and, because we counted the number of terms $E_{\lambda_{1} \lambda_{1}}+E_{\lambda_{2} \lambda_{2}}+\cdots+E_{\lambda_{k} \lambda_{k}}$ twice in the first term for t, we must subtract $2^{n^{m}}$.

Remark. For 2-dimensional matrices, analogous results of Theorem A and Theorem B are respectively Lemma 5 [5] and Theorem 1 [4]. For Theorem C, we do not have any reference, but we find that t in Theorem C is correct for $M_{2,3}(Z /(2))$, where Z is the set of all integers and $|Z /(2)|=2$. For $M_{2,3}(Z /(2))$, $t=44$ from our D-class table of the semigroup.

REFERENCES

[1] L. E. Dickson, Linear groups, Dovers (reprint), New York, 1965.
[2] R. Kaneiwa, N-dimensional matrices and n-th order invariant forms (Japanese, Surikaiseki K. K. 274 (1976), 83-97; MR 58-10955.
[3] Jin B. Kim, James E. Dowdy, Determinants of n-dimensional matrices, J. Korean Math. Soc. 17 (1980), 63-68; MR 81k-15006.
[4] J. B. Kim, On singular matrices, Czechoslovak. Math. J. 18-93 (1968), 274-277; MR374182.
[5] J. B. Kim, On the structures of linear simigroups, J. Combin. Theory 11 (1971), 62-71; MR43-4936.
[6] R. Oldenburger, Higher dimensional determinants, Amer. Math. Monthly 47 (1940), 25-33; MR1-194.
[7] N. P. Sokolov, Spatial matrices and their applications (Russian), Gosudarstv. Izdat. FizMat. Lit., Moscow, 1960, 300 pp; MR24-A122.
[8] N. P. Sokolov, On some multidimensional determinants with integral elements (Russian), Ukrain Mat. Z̆ 16 (1964), 126-132, MR2B-3963.

[^0]: AMS Subject Classification (1980): Primary 15A99, Secondary 16A32.
 Key words and phrases: Multidimensional matrices, idempotent, n-dimensional idempotent matrices

