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ON N-DIMENSIONAL IDEMPOTENT MATRICES

Jin Bai Kim and James E. Dowdy

An n� n matrix A = (aij) will be called a 2-dimensional matrix of order n.
We shall study 2 m-dimensional idempotent matrices of order n with respect to an
associative matrix product.

1. Introduction. We shall denote the set of all n � n matrices over a �eld
F by M2;n(F ) and the set of all n�n�� � ��n = nm matrices over F by Mm;n(F ).
Any matrix A = (aij...k) in Mm;n(F ) will be called an m-dimensional matrix of
order n. For a determinant of an m-dimensional matrix, we refer [2, 3, 6 and 7].
Let A = (ai1i2...i2m) and B = (bj1j2...j2m) be members of M2m;n(F ). We de�ne a
matrix product AB = C = (ck1k2...k2m) as follows:

ck1k2...k2m =

nX
t1=1

nX
t2=1

� � �

nX
tm=1

ak1k2...kmt1t2...tmbt1t2...tmkm+1...k2m :

This matrix product is associative (see [3]) and with respect to this matrix product
AB = C,M2m;n(F ) forms a semigroup (and a ring). A is an idempotent if AA = A.
We shall count the number of idempotents in the semigroup M2m;n(F ), where F
is a �nite �eld, and we shall classify the idempotents.

2. The number of idempotents. Let S be a semigroup and let a; b 2 S.
We de�ne aLb (aRb) to mean that a and b generate the same principal left (right)
ideal of S. If aLb, we say that a and b are L-equivalent. By La we mean that the
set of all elements of S which are L-equivalent to a. The join of the equivalence
relations L and R is denoted by D. If X is a subset of the semigroup S, then we
de�ne E(X) = fx 2 X : xx = xg. We need the following lemma.
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Lemma 1 [5, Lemma 5]. Let D, be the D-class of rank r in the semigroup

M2m;n(F ). Let jF j = p. De�ne [pk] = (pk�1)(pk�p) . . . (pk�pk�1) =

k�1Y
i=1

(pk�pi).

Then jE(Dr)j = [pn]=[pr][pn�r. Let t(r) = [pn]=[pr][pn�r].

Theorem A. The number of all idempotent matrices in M2m;n(F ) is equal

to t:

t =

nmX
r=0

t(r):

Proof. If A = (aij...k) 2 M2m;n(F ) we identify A as A0 = (a0ij) 2 M2;nm(F ).
Then applying Lemma 1, we obtain the desired result.

Let S be a semigroup and let a 2 S. We de�ne V (a) = fx 2 S : axa = a and
xax = xg. We need the following lemma to prove Theorem B.

Lemma 2 [4, Theorem 1]. If A 2 M2;n(F ), then the cardinal number of the

inverse set V (A) is equal to jF j2r(n�r), where r is the rank of the matrix A.

Let r be an integer such that 0 � r � nm. We have the following. (We
assume that S =M2m;n(F ) and jF j = p).

Theorem B. If A 2 Dr, then jV (A)j is given by t, where t = p2r(n
m
�r).

Proof. In the semigroup M2m;n(F ) there are nm + 1 D-classes Dr of rank
r. (See the proof of Theorem A). Applying Lemma 2 and replacing n by nm in
jF j2r(n�r), we obtain the desired result. (Note that jF j = p).

3. Classi�cation of idempotents. We de�ne Vr(n) = f(i1; i2; . . . ; ir) :
ij are positive integers such that 1 � ij � ng. Let A = (aij;...k) 2 M2m;n(F ).
For any entry aij...k of A, there exists � 2 V2m(n) such that (ij . . . k) = �; we
write aij...k = a�. For an element � = (�1; �2; . . . ; �m) 2 Vm(n), we write ��
to mean that �� = (�1; �2; . . . ; �m; �1; �2; . . . ; �m) 2 V2m(n). We de�ne a matrix
E� = (aij...k) as follows: a� = 1 and a� = 0 for all � 2 V2m(n) such that � 6= �.
We can see that E�� is an idempotent (� 2 Vm(n)) and we may call E�� a primitive

idempotent. De�ne I =
X

�2VM (n)

E��. Then we can see that IA = AI = A for all

A 2 M2m;n(F ). We denote the zero matrix by 0. Then for A = (aij...k) we have

A =
X

�2V2m(n)

a�E� (a� 2 F ). De�ne (A)� = a� as the �-entry of A, and de�ne

D(A) = f� 2 Vm(n) : (A)�� 6= 0g.

Types of idempotents. Let A be an idempotent. A is called an idempotent of
type I if either a�� = 1 and a�� = 0 (� 6= �) for all � 2 D(A) or if a�� = 1 and
a�� = 0 (� 6= �) for all � 2 D(A). A is called an idempotent of type II if A is not
an idempotent of type I and if a�i�i = 1.

An idempotent A which is neither of type I nor type II will be called an
idempotent of type III . We assume the zero matrix 0 is an idempotent of type I .
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We consider the idempotents of type I . Let Fk = f�1; �2; . . . ; �kg be a non-
empty subset of Vm(n). Let Ui be a subset of Vm(n) n Fk = fx 2 Vm(n) : x 62 Fkg,
(i = 1; 2; . . . ; k). Then:

A =

 
E�1�1 +

X
�2U1

x��1E��1

!
+

 
E�2�2 +

X
�2U2

x��2E��2

!
+ � � �+

+

 
E�k�k +

X
�2Uk

x��kE��k

!

and

B =

 
E�1�1 +

X
�2U1

x�1�E�1�

!
+

 
E�2�2 +

X
�2U2

x�2�E�2�

!
+ � � �+

+

 
E�k�k +

X
�2Uk

x�k�E�k�

!

where x� 2 F (� 2 V2m(n)). Now we can state the following theorem.

Theorem C. Every idempotent of type I is either of the form A or the form

B. The number of all idrmpotents of type I in Mm;n(F ) is given by t:

t = 2

nmX
k=0

�
nm

k

�
pk(n

m
�k) � 2n

m

; (p = jF j):

Proof. Let U; V; Ui and Vi be subsets of the set Vm(n) n Fk, where Fk =
f�1; �2; . . . ; �kg � Vm(n). Let C = E�1�1 +E�2�2 + � � �+E�k�k ,

D =

kX
�i2Ui

x�i�iE�i�i ; E =

kX
�u2Vi

x�i�iE�i�i

and G =
X
�2U
�2V

x��E�� . Assume that X = C + D + G and Y = C + E + G are

idempotents of type I . The following is the product table for C, D, E and G.

C D E G

C C D O O

D O O D0 D0

E E G0 O O

G O O E0 G0

In the table, DE = D0 means that DE
takes the form D but D0 6= D. Similarly for E0

and G0.

Then from XX = X and Y Y = Y we have that X = C + D = B and
Y = C + E = A. We now consider the number t of all idempotents of type I . We
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note that jVm(n)j = nm. The number of the ordered sets Fk is equal to
�
nm

k

�
; the

number of all possible terms
X
�2Vi

x��iE��i (i = 1; 2; . . . ; k)

 X
�2Ui

x�i�iE�i�i in B

!
in A is equal to pk(n

m
�k):

In the expression of t, the factor 2 appears because of the two forms A and B and,
because we counted the number of terms E�1�1 +E�2�2 + � � �+E�k�k twice in the
�rst term for t, we must subtract 2n

m

.

Remark. For 2-dimensional matrices, analogous results of Theorem A and
Theorem B are respectively Lemma 5 [5] and Theorem 1 [4]. For Theorem C,
we do not have any reference, but we �nd that t in Theorem C is correct for
M2;3(Z=(2)), where Z is the set of all integers and jZ=(2)j = 2. For M2;3(Z=(2)),
t = 44 from our D-class table of the semigroup.
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