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REPRODUCTIVITY OF SOME EQUATIONS OF ANALYSIS, II

Jovan D. Ke�cki�c

This note is a direct continuation of (1).

4. Equations for linear functionals

4.1. Introduction. Let V be a vector space over a �eld S and let A1; . . . ; An

be linear functionals mapping V into S. In this part we shall consider various
equations in x 2 V of the form

(4.1.1) b+

nX
k=1

akAkx = 0

and

(4.1.2) x = b+
nX

k=1

akAkx

where b, a1; . . . ; an 2 V are given. By analogy with integral equations, equations
of the form (4.1.1) will be called equations of the �rst kind, and equations of the
form (4.1.2) will be called equations of the second kind. They are homogeneous if
b = 0.

4.2. Equations of the �rst kind. 4.2.1. Let V be a vector space over
and let A : V ! S be a linear functional on V . Consider the equation in x:

(4.2.1) Ax = 0:

Suppose that there exists x0 2 V such that Ax0 6= 0; otherwise (4.2.1) holds
for all x 2 V . Then, since A is linear, we have x0 6= 0, and the equation (4.2.1) is
equivalent to the equation

(4.2.2) x = x+ �x0Ax (� 2 S;� 6= 0);
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i. e. to the equation
x = Fx;

where
Fx = x+ �x0Ax:

The condition for reproductivity F 2 = F becomes

(1 + �Ax0)Ax = 0:

Hence, for � = �1=Ax0, the equation (4.2.2) is reproductive, and its general
solution, and so the general solution of (4.2.1) is given by

(4.2.3) x = t�
At

Ax0
x0;

where t 2 V is arbitrary.

Example 1. If g 6� 0 is a given continuous function on [a; b], then there exists

a function h 2 C[a; b] such that

Z
g(x)h(x)dx 6= 0, and the general solution of the

equation in f :
bZ

a

g(x)h(x)dx = 0;

is given by

f(x) = T (x)�Bigg(

bZ
a

g(x)T (x)dx

! bZ
a

g(x)h(x)dx

!�1
h(x);

where T 2 C[a; b] is arbitrary.

So, for example, the general solutions of the equations

bZ
a

f(x)dx = 0 and

�Z
��

f(x) sin xdx = 0

are

f(x) = T (x)�
1

b� a

bZ
a

T (x)dx; f(x) = T (x)�
x

2�

�Z
��

T (x) sinxdx;

respectively, where in both cases T is arbitrary; in the �rst case T 2 C[a; b], and in
the second T 2 C[��; �].

Example 2. The form of the general solution (4.2.3) of the equation (4.2.1)
shows that there exist di�erent formulas for the general solution; the element x0
is any element of V such that Ax0 6= 0, and by varying x0 we obtain di�erent
general solutions of (4.2.1) Naturally, all the obtained formulas are equivalent.
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Nevertheless, in applications those formulas may lead to di�erent conclusions. The
following example is an illustrations of that fact.

The well known Rolle's theorem states that if f 2 C[a; b], f is di�erentiable
in (a; b) and if f(a) = f(b), then there exists c 2 (a; b) such that f 0(c) = 0. In order
to remove the third supposition f(a) = f(b), we solve the equation

(4.2.4) f(a)� f(b) = 0 (a 6= b);

which is an equation of the form (4.2.1). Since for the function f(x) = x we have
f(a)� f(b) = a� b 6= 0, the general solution of (4.2.5) is

(4.2.5) f(x) = T (x)�
T (a)� T (b)

a� b
x:

Applying Rolle's theorem to the function f , de�ned by (4.2.5), we obtain the La-
grange mean-value theorem: If T 2 C[a; b], and if T is di�erentiable in (a; b), then
there exists c 2 (a; b) such that

T (a)� T (b)

a� b
= T 0(c):

However, the general solution of (4.2.4) can also be written in the form

(4.2.6) f(x) = T (x)�
T (a)� T (b)

S(a)� S(b)
S(x);

where S(a) 6= S(b). Applying Rolle's theorem to the function f de�ned by (4.2.6) we
obtain the Cauchy mean-value theorem: If T; S 2 C[a; b], if they are di�erentiable
in (a; b), and if S(a) 6= S(b), then there exists c 2 (a; b) such that

(4.2.7) T 0(c) =
T (a)� T (b)

S(a)� S(b)
S0(c);

The additional hypothesis S0(x) 6= 0 for x 2 (a; b), which implies S(a)� S(b) 6= 0,
enables us to write (4.2.7) in the familiar form

T (a)� T (b)

S(a)� S(b)
=

T 0(c)

S0(c)
:

Example 3. Suppose that f 2 C[a; b]. The general solution of the equation in
f :

1

b� a

bZ
a

f(x)dx = f

�
a+ b

2

�

is given by

f(x) = T (x)�
12

(b� a)2

0
@ 1

b� a

bZ
a

T (x)dx� T

�
a+ b

2

�1Ax2:
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Example 4. Let V be the set of all real functions de�ned on [a; b], such that
for a �xed x0 2 (a; b) the limit lim

x!x0
f(x) exists. Then f 2 V is continuous at x0 if

and only if
f(x) = T (x) + (T (xa)� lim

x!x0
T (x)) sgn (x� x0)

2;

where T 2 V is arbitrary.

4.2.2. We now turn to the nonhomogeneous equation

(4.2.8) Ax = �

where A : V ! S is a linear functional, � 2 S is given, and � 6= 0. Suppose that
x0 2 V is such that Ax0 6= 0. Then the general solution of (4.2.8) is

x =
�

Ax0
x0 + t�

At

Ax0
x0;

where t 2 V is arbitrary.

Notice that the equation (4.2.8) is possible if and only if there exists x0 2 V
such that Ax0 6= 0. Hence, if the equation (4.2.8) is possible for a �xed � 2 S, it is
possible for all � 2 S.

Example 5. Let c be the set of all convergent real sequences. The general
solution of, the equation

lim xn = �

is given by

(4.2.9) xn =
�

�
x0n + tn �

lim tn
limx0n

x0n;

where (tn) 2 c is arbitrary, and lim x0n = �. In particular we may take (x0n) = (�),
and (4.219) takes the simpler form

xn = �+ tn � lim tn:

Example 6. Let F be the set of all complex analytic functions for which z = a
is a regular point or an isolated singularity. The general solution of the equation
in f 2 F :

Res
z=a

f(z) = �

is

f(z) =
�

z � a
+ T (z)�

1

z � a
Res
z=a

T (z);

where T 2 F is arbitrary,

Example 7. Let V be unitary vector space over S. The general solution of
the equation in x:

(x; a) = �
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where a 2 V and � 2 S are �xed, is given by

x =
�a

(a; a)
+ t�

(t; a)

(a; a)
a;

where t 2 V is arbitrary.

4.2.3. Let A1; . . . ; An be linear functionals on a vector space V over S and
consider the equation in x:

(4.2.10)

nX
k=1

akAkx = 0;

where a1; . . . ; an 2 V are given. Since those vectors can be taken to be linearly
independent, the equation (4.2.10) splits into the system

(4.2.11) A1x = 0 ^ � � � ^; Anx = 0;

which consists of n equations of the form (4.2.1).

Example 8. The integral equation

(4.2.12)

1Z
�1

(5tu3 + 4t2u)x(u)du = 0 (x 2 C[�1; 1])

can be replaced by the system

(4.2.13)

1Z
�1

u3x(u)du = 0 ^

1Z
�1

ux(u)du = 0:

The general solution of the �rst equation of this system is

(4.2.14) x(t) = S(t)�
5

2
t

1Z
�1

t3S(t)dt (S 2 C[�1; 1])

and substituting (4.2.14) into the second equation of the system (4.2.13) we obtain
the equation for S:

1Z
�1

�
u�

5

3
u3
�
S(u)du = 0;

with the general solution

(4.2.15) S(t) = T (t) +
105

8
t3

1Z
�1

�
u�

5

3
u3
�
T (u)du;

where T 2 C[�1; 1] is arbitrary.
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Combining (4.2.14) and (4.2.15) we obtain the general solution of the equation
(4.2.9):

(4.2.16) x(t) = T (t) +
l5t

8
(7t2 � 5)

1Z
�1

tT (t)dt+
35t

8
t(3� 5t2)

1Z
�1

t3T (t)dt

where T 2 C[�1; 1] is arbitrary.

Notice that (4.2.16) is not only the general solution of (4.2.12), but of any
equation of the form

1Z
�1

(A(t)u3 +B(t)u)x(u)du = 0;

where A and B are linearly independent functions.

Remark. The nonhomogeneous equation

nX
k=1

akAkx = b (6= 0)

can be treated in a similar manner. Indeed, from the equation itself follows that b

must be of the form
nX

k=1

�kak; otherwise the equation has no solutions. Hence, it

can be reduced to
nX

k=1

ak(Akx� �k) = 0;

and the last equation splits into the system

Akx = �k (k = 1; . . . ; n):

Example 9. The equation

1Z
�1

(5tu3 + 4t2u)x(u)du = 16t2

splits into the system

1Z
�1

u3x(u)du = 0 ^

1Z
�1

ux(u)du = 4;

and its general solution is easily obtained. It is:

x(t) = T (t)�
105

2
t3 +

105

8
t3

1Z
�1

�
u�

5

3
u3
�
T (u)du;
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where T 2 C[�1; 1] is arbitrary.

Again, the obtained solution is also the general solution of the equation

1Z
�1

(A(t)u3 +B(t)u)x(u)du = 4B(t);

where A and B are linearly independent functions.

4.2.4. Let Ak : V ! S (k = 1; . . . ; n) be linear functionals on V , and suppose
that there exist ak 2 V (k = 1; . . . ; n) such that Ajaj = Æij (i; j = 1; . . . ; n) where
Æij is the Kronecker delta.

Then the general solution of the system

Akx = 0 (k = 1; . . . ; n)

is

(4.2.17) x = t�

nX
k=1

(Akt)ak;

where t 2 V is arbitrary.

Hence, if A1; . . . ; An is a complete set of linear functionals (i. e. Akx = 0 for
k = 1; . . . ; n implies x = 0), from (4.2.17) follows the representation

(4.2.18) t =
nX

k=1

(Akt)ak

for arbitrary t 2 V . Moreover, the condition Aiaj = Æij implies that the vectors ak
are linearly independent, which means that the representation (4.2.18) is unique.

Example 10. Let Pn be the set of all real polynomials with degree � n. Then
if P 2 Pn, the functionals A1; . . . ; An+1 de�ned by

AkP = P (xk) (k = 1; . . . ; n+ 1)

where x1; . . . ; xn+1 are distinct real numbers, form a complete set. Moreover, for
the polynomials ak 2 Pn (k = 1; . . . ; n+ 1) de�ned by

ak(x) =
(x� x1) . . . (x� xk�1)(x � xk+1) . . . (x� xn+1)

(xk � x1) . . . (xk � xk�1(xk � xk+1) . . . (xk � xn+1)
(k = 1; . . . ; n+ 1)

we have Aiaj = Æij . Hence, if P 2 Pn we obtain the Lagrange interpolation formula

P (x) =

n+1X
k=1

(x� x1) . . . (x� xk�1)(x � xk+1) . . . (x� xn+1)

(xk � x1) . . . (xk � xk�1)(xk � xk+1) . . . (xk � xn+1)
P (xk):
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Again, the functionals Fk de�ned by FkP = P (k)(a) for k = 0; 1; . . . ; n, also
form a complete set and the corresponding polynomials ak such that Fiaj = Æij are
de�ned by ak(x) = (x� a)k=k!. This implies the Taylor expansion

P (x) =

nX
k=0

(x� a)k

k!
P (k)(a):

Example 11. Let V be an n-dimensional unitary vector space with an or-
thonormal basis (e1; . . . ; en). Then the system of linear functionals A1; . . . ; An,
de�ned by

Akx = (x; ek) (k = 1; . . . ; n)

is a complete system. Since Aiej = Æij , we obtain the familiar representation

x =

nX
k=1

(x; ek)ek:

Remark. Similar conclusions can be obtained in the case when A1; A2; . . .
is a countable set of linear functionals, but in this case it is necessary to examine

the convergence of the series
1X
k=1

(Akt)ak. As special cases we mention the Taylor

expansion for analytic functions, the Fourier expansion for elements of a Hilbert
space, etc.

Remark. It is interesting to note that the representation (4.2.18) is itself
reproductive; namely, if we denote the right hand side of (4.2.18) by Ft, then
F 2 = F .

4.2.5. At the end of this section we mention one more possibility, of a rather
formal nature. Suppose that V is the space of all functions which map a vector
space U into the scalar �eld S, and that A : V ! V is a linear operator. The
equation in f 2 V :

(4.2.19) Af = 0

is a functional equation. However, for a �xed a 2 U the expression (Af)(a) de�nes
a linear functional on V , and the equation

(4.2.20) (Af)(a) = 0

can be solved by the method exposed here. Suppose that Sa is the set of all solutions
of the equation (4.2.20). Then if S denotes the set of all solutions of the equation
(4.2.19), we have, formally,

S =
\
a2U

Sa:

Example 12. If S is the set of all solutions of the equation

(4.2.21) f(x+ 1) = f(x) (f : R! R)
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then, since the general solution of the equation

f(a+ 1) = f(a) (a 2 R is �xed )

is
f(x) = T (x)� (T (a+ 1)� T (a))x (T : R! R arbitrary )

we have

S =
\
a2R

ff j f(x) = T (x)� (T (a+ 1)� T (a))x; T 2 RR arbitraryg:

The set S de�ned by (4.2.22) gives one more formal expression for the general
solution of (4.2.21).

4.3. Equations of the second kind. Let V be a vector space over S and
let A : V ! S be a linear functional on V . Consider the equation in x:

(4.3.1) x = b+ aAx;

where a; b 2 V are given. From (4.3.1) follows

(4.3.2) (1�Aa)Ax = Ab:

We distinguish between the following cases:

(i) Aa 6= 1. Then from (4.3.2) follows

Ax =
Ab

1�Aa
;

which, substituted into (4.3.1), gives the unique solution of that equation:

x = b+
Ab

1�Aa
a:

(ii) Aa = 1, Ab 6= 0. Then the equation (4.3.1) has no solutions.

(iii) Aa = 1, Ab = 0. Then it is easily veri�ed that the equation (4.3.1) is
reproductive, and hence its general solution is

(4.3.3) x = b+ aAt;

where t 2 V is arbitrary.

Remark. In the special case b = 0, i. e. in the case of the homogeneous
equation

(4.3.4) x = aAx

we have the following possibilities:

(i) Aa 6= 1. The trivial solution x = 0 is the only solution of the equation
(4.3.4).
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(ii) Aa = 1. The equation (4.3.4) is reproductive, and its general solution
is

(4.3.5) x = aAt;

where t 2 V is arbitrary.

Remark. Unless Ax = 0 for all x 2 V , A maps V onto S, and hence in
the solutions (4.3.3) and (4.3.5) At can be replaced by � where � 2 S is arbitrary.

In a similar manner we may treat the equation in x:

(4.3.6) x = b+

nX
k=1

akAkx;

where b; a1; . . . ; an 2 V are given, and Ak : V ! S (k = 1; . . . ; n) are linear
functionals on V . We again suppose that a1; . . . ; an are linearly independent.

Now, from (4.3.6) follows

(4.3.7) Akx = Akb+

nX
i=1

(Akai)(Aix) (k = 1; . . . ; n)

and this is a linear system in A1x; . . . ; Anx. Let A = kAiajkn�n, B = kAkbkn�1.
If det(I � A) 6= 0, the system (4.3.7) has a unique solution, (�1; . . . ; �n) say, and
the equation (4.3.6) has the unique solution x = b+

Pn

k=1 �kak.

If det(I �A) = O^ rank (I �A) < rank kI �AjBk, the system (4.3.7) has
no solutions, implying that the equation (4.3.6) has no solutions.

If det(I�A) = 0^ rank (I�A) = rank kI�AjBk, then some of the Akx
0s

can be expressed as linear combinations of others. When this is done, the equation
(4.3.6) becomes

x = b+
mX
k=1

bkAikx (ik 2 f1; . . . ; ng);

where m < n, and it is easily veri�ed that it is a reproductive equacion with the
general solution

x = b+

mX
k=1

bkAik t; (t 2 V arbitrary )

or equivalently,

x = b+

mX
k=1

�kbk (�k 2 S arbitrary):

Remark. Notice that the equation (4.3.6) implies that its solution x, if it
exists, must be of the form

x = b+

nX
k=1

�kak:
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The scalars �k are obtained by substituting (4.3.8) into (4.3.6) and equating coef-
�cients. Though this is a simpler method, we have emphasized here the method
which uses the notion of reproductivity.

Example 13. Let V = C[a; b], and let Akx =

bZ
a

bk(u)x(u)du. The equation

(4.3.6) becomes

x(t) = b(t) +

bZ
a

 
nX

k=1

ak(t)bk(u)

!
x(u)du;

and we see that the complete theory of Fredholm integral equations of the second
kind with degenerate kernel is a consequence of the above result. Concrete examples
of such equations need not be given here.

Example 14. Suppose that f is an integrable function on [0; 1] and consider
the equation in f :

f(x) = x(x� 1)

1Z
0

f(x)dx + xf(1)� (x � 1)f(0):

This is a homogeneous equation and it has the trivial solution f(x) = 0. We look
for nontrivial solutions.

From (4.3.9) follows

1Z
0

f(x)dx = �
1

6

1Z
0

f(x)dx +
1

2
f(1) +

1

2
f(0); f(1) = f(1); f(0) = f(0):

Hence,

(4.3.10)

1Z
0

f(x)dx =
3

7
(f(1) + f(0));

and substituting (4.3.10) into (4.3.9), we obtain the reproductive equation

f(x) =
1

7
(3x2 + 4x)f(1) +

1

7
(3x2 � 10x+ 7)f(0);

with the general solution

f(x) = (3x2 + 4x)T (1) + (3x2 � 10x+ 7)T (0);

where T is an arbitrary function, integrable on [0; 1] or equivalently,

f(x) = (3a+ 3b)x2 + (4a� 10b)x+ 7b;



120 Jovan D. Ke�cki�c

where a(= T (1)) and b(= T (0)) are arbitrary real numbers.

By a direct veri�cation we see that (4.3.11) satis�es (4.3.9) which means
that (4.3.1 I ) is the general solution of the given equation (4.3.9).

I am indebted to Professor D. D. Adamovi�c for careful reading of this paper. His
comments and suggestions have greatly improved the original version.
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