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LEVEL SETS OF POLYNOMIALS IN SEVERAL�

REAL VARIABLES

C. H. Heiberg

By generalizing the concept of homogeneous polynomial and by adapting
Cauchy's technique for obtaining bounds on the zeros of polynomials in one complex
variable, the level surfaces of a real polynomial in En are studied with respect to
their intersection with certain curves, including all lines, passing through the origin.
In addition, it is shown that the equipotential surface of any axisymmetric harmonic
polynomial in E3 is unbounded if and only if it is asymptotic to a �nite union of
cones each of which is parallel to a cone having the origin as its vertex.

This paper extends results obtained by M. Marden and P. A. McCoy in 1976.

Theorem 1. Let H be a real-valued polynomial in n variables, � 2 En, �. a

real number and q an n-tuple of positive integers. Then

L�(H) \ (0;1)�;q � (c1;q(�; q); c2(�; q))� ;

where L�(H) denotes the level set f� 2 En : H(�) = �g,(a; b)�;q denotes the image

of the open interval (a; b), 0 � a < b � 1, under the mapping 7! 

r1=qi�i

�
and tlle

endpoints cj are de�ned in section 3.

Theorem 2. The equipotential surface of any axisymmetric harmonic poly-

nomial in E3
nX

k=0

akr
kPk(cos �); an 6= 0;

is unbounded if and only if it is asymptotic to a �nite union
S
ci of cones each of

which is parallel to a cone having the origin as its vertex. Moreover, each ci has

the origin as its vertex if and only if an�1 = 0.

1. Basis notation. Let En denote n dimensional Euclidean space. The
letters a and � denote points of En. Alternatively denote a point � of En by using
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vector notation h�ii, where �i denotes the i-th component of �. The scalar product

of two points � and � of En will be denoted by � � � and the origin of En by
!

0 .

For any set S, let Sn denote the n-fold Cartesian product of the set S with

itself. Let Z+ denote the set of positive integers. For z in Z+ let
!
z = (z; z; . . . ; z) 2

(Z+)
n.

2. Generalized homogeneous polynomials. Marden and McCoy's ex-
tension of Cauchy's technique involves writing polynomials in several variables as
sums of homogeneous polynomials and then using the special properties of ho-
mogeneous polynomials to obtain estimates of the locations of the zeros of the
general polynomial. This method does not distinguish between the two polyno-
mials h1(�) = �21 + �41 + �42 and h2(�) = �21 + �22 + �41 , both being viewed as a
sum of homogeneous polynomials of degree 2 and 4. In the following paragraph
the concept of homogeneous polynomial is generalized in such a way that if the
methods of Marden and McCoy are applied using this more general concept then
polynomials such as h1 and h2 are distinguished resulting in better estimates.

Since a polynomial
X
p

�p�
p1
1 . . .�pnn in n variables is homogeneous if and

only if there exists a positive integer d such that each index p satis�es the equation
p1 + p2 + � � �+ pn = d, the concept of homogeneity may be generalized by de�ning

the polynomial
X
p

�p�
p1
1 . . .�pnn to be q-homogeneous if and only if there exists a

point q of (Z+)
n and a positive rational number I such that each index p satis�es

the equation p1=q1 + � � � + pn=qn = I , Call I the index of q-homogeneity of the
polynomial. It is straightforward to show that a polynomial h is q-homogeneous of
index I if and only if

h
�D

r1=qi�i

E�
= rIh(�) (1)

for all r > 0 and all �. Returning to the examples of the preceding paragraph we see
that h1 may be viewed as the sum of �21 + �42 and �41 , q-homogeneous polynomials
of indices 1 and 2 respectively, for q = (2; 4), whereas h2 may be viewed as the sum
of �21 + �22 and �41 , q-homogeneous polynomials of indices 1 and 2 respectively, for
q = (2; 2). Further discussion of this generalization of the concept of homogeneous
polynomial can be found in [1].

3. De�nitions of cj(�; q). Throughout this section let H be a given real-
valued polynomial in n variables, � be a given real number and q 2 (Z+)

n. It
is straightforward to show that H(�) � � may be written in exactly one way as

a sum
kX

j=1

hj(�) of polynomials where each polynomial hj is q-homogeneous and

where Ij(q), the index of q-homogeneity of hj , is a strictly increasing function of j.
Writing the rational numbers numbers I1; I2; . . . ; Ik in reduced form, let l = l(q)
denote the least rational common multiple of their denominators. For i = 1; k let
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Mi(�; q) = max
j 6=i

jhj=hij(�). De�ne cj(�; q) by

c1(�; q) = (1 +M1(�; q))
�l if h1(�) 6= 0;

= 0 otherwise

and

c2(�; q) = (1 +Mk(�; q))
�l if hk(�) 6= 0;

=1 otherwise

4. Corollaries and remarks. The following corollary is given in order to
relate Theorem 1 to the corresponding work of Marden and McCoy.

Corollary 1. Let � be a real number, H be a real-valued polynomial written

as a sum
X
j�v

hj of homogeneus polynomials, where the degree of hj is j. If j�j = 1

and hv(�) 6= 0, then

L�(H) \ (0;1)
�;
!

v
� (c1(�;

!
v ); c2(�;

!
v ))

�;
!

v
: (2)

Corollary 1, a specialization of Theorem 1 of this paper, is a strengthening
of Theorem 1 of [2]. In fact, the latter theorem is equivalent to the result obtained
by weakening the conclusion of Corollary 1 to read

L�(H) \ (0;1)
�;
!

v
� (c1(�;

!
v )v=l; c2(�;

!
v )v=l)

�;
!

v
: (3)

That this is a weaker conclusion follows from the three inequalities O < c1 < 1,
1 < c2, l � v. That l can be strictly less that v is illustrated by the example
H(�) = 4�21 � �41 � �42 , � = 0, � = (1=

p
2; 1=

p
2) for which l = 1, v = 2, and

c2(�;
!
v ) = c1(�;

!
v )�1 = 5.

Before stating Corollary 2, which is given because it can give surprisingly
sharper estimates than Theorem 1, some additional notation is necessary. For

p 2 (Z+)
n, let >p denote the curve having the equation

nX
i=1

�pi i = 1. Since the

family of sets f(0;1)�;pg�2>p partitions Ennf!0g it is immediate that to each point

� 2 En n f!0g there corresponds exactly one point � 2 >p such that � 2 (0;1)�;p.
Denote this point � by �� .

Corollary 2. Let H be a real-valued polynomial in n variables, � a real

number, � 2 En n f!0g and p 2 (Z+)
n. Then

� 6� (c1(�� ; p); c2(�� ; p))��;p ) � 62 L�(H):

Again considering the preceding example, with q =
!
v and p = (2; 4), one can

deduce from Corollary 2 that every zero of H on the ray (0;1)�;q lies between the
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origin and the point (m;m) where m2 = 2(28+
p
704=(27+

p
704). In actuality the

only such zero is the point (
p
2;
p
2) so that in terms of distance from the origin

the estimate obtained from Corollary 2 involves a relative error of less than 2.1%
in comparison with relative errors of over 253% and 1265% incurred by the use of
Theorem 1 of this paper and [2] respeetively.

Theorem 2 of this paper contradicts Theorem 2 of [2] and corrects Theorem
6 of [2]. Adopting the notation and terminology of [2], the error in the proof of
these theorems is the assumption that if rm ! 1 and �m ! �, where � = � is a
null cone of the highest order term of H , then (rm; �m) is asymptotic to a subset of
the cone � = �. This is false even if H is an axisymmetric harmonic polynomial in
E3 and if for some � and all m the point (rm; �m) belongs to L�(H). To see this,
consider the example H(r; �) = r cos �� r2(3 cos

2 �� 1)=2, for which A1(�) = cos �
and 2A2(�) = �3 cos2 � + 1. Clearly L0(H) is unbounded since if f�mg is chosen
so that �m 6= �, for all m, �m ! �, as m ! 1, where � is a zero of A2(�), then
rm(�) � �A1(�m)=A2(�m) ! 1, as m ! 1 and (�m; rm) 2 L0(H) for all m.
Let dm denote the distance between the cone � = � and the point (rm; �m). Then
lim

m!1
dm = lim

m!1
jrm sin(� � �m)j = lim

m!1
2j cos �mj sin(� � �m)=(3 cos

2 �m � 1)j =
1=
p
6, so that the example under discussion is a counterexample to Theorems 2

and 6 of [2].

5. Proof the Theorem 1. Write H(�)� � in the form

kX
j=1

hj(�) where hj

is a q-homogeneous polynomial of index Ij , Ij being a rational number in reduced
form, and where Ij is a strictly increasing function of j. Recall that l denotes the
least common multiple of the denominators of I1; I2; . . . ; Ik. To prove Theorem 1
it suÆces to show for � 2 En, q 2 (Z+)

n that���H
�D

r1=q1�i

E�
� �

��� > 0 if c2(�; q) � r <1 (4)

and that ���H
�D

r1=qi�i

E�
� �

��� > 0 if 0 < r � c1(�; q) (5)

In proving (4) it can be assumed that r > 1 since c2(�; q) > 1. It can also be
assumed that hk(�) 6= 0 since otherwise c2(�; q) = 1 in which case (4) is trivial.
But for hk(�) 6= 0, r > 1

���H
�D

r1=qi�i

E�
� �

��� � jhk(�)jrIk �
k�1X
j=1

jhj(�)jrIj �

� jhk(�)jrIk
0
@1�Mk(�; q)

l(Ik�I1)X
j=l(Ik�Ik�1)

(r1=l)�j

1
A =

= jhk(�)jrIk
�
1�Mk(�; q)(r

1=l�Ik+Ik�1 � r�Ik+I1)
�
(r1=l � 1)�1 >

> jhk(�)jrIk (1�Mk(�; q)) (r
1=l � 1)�1;
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from which (4) follows.

In proving (5) it can be assumed that r < 1 since c1(�; q) < 1. It can also
be assumed that h1(�) 6= 0 since otherwise c1(�; q) = 0 in which case (5) is trivial.
But for h1(�) 6= 0, 0 < r < 1,

���H
�D

r1=qi�i

E�
� �

��� � rI1 jh1(�)j �
kX

j=1

rIj jhj(�)j �

� rI1 jh1(�)j
0
@1�M1(�; q)

l(Ik�I1)X
j=l(I2�I1)

(r1=l)j

1
A =

= rI1 jh1(�)j
�
(r1=l)�1 � 1�Mk(�; q)

�
(r1=l)l(I2�I1)�1 � (r1=l)l(lm�I1)

��
�
(r1=l)�1 � 1

�
>

rI1 jh1(�)j
�
(r1=l)�1 � 1�Mk(�; q)

��
(r1=l)�1 � 1

��1
;

from which (5) and hence Theorem 1 follows.

6. Proof of Theorem 2. By an equipotential surface of an axisymmetric
harmonic polynomial in E3 is meant a level surface of a real harmonic polynomial
of degree n,

H(r; �) =

nX
k=0

akr
kPk(cos �); an 6= 0;

Pk(cos �) being the Legendre polynomial of degree k in cos � = �r�1. To prove
Theorem 2 it suÆces to prove that

given (rm; �m) in L�(H), m = 1; 2; . . . , such that �m ! � and rm !1,

as m!1, there exists a number d such that the distance dm, between

(rm; �m) and � = � approaches d as m!1 and such that d = 0 if and

only if an�1 = 0

(6)

and that

given (rm; �m) in L�(H), m = 1; 2; . . . such that rm !1, as m!1,

there exists a �nite partition fZig of the positive integers such that

f�m( mod 2�)gm2Zi is a Cauchy sequence for each i.

(7)

The following result will be used in the proofs of (6) and (7).

If (rm; �m) 2 L�(H) and rm !1, as m!1, then Pn(cos �m; )! 0 as

m!1:
(8)

Letting �m = (1; cos �m) and q = (1; 1) it follows from Theorem 1 that (rm; cos �m)2
(c1(�m; q); c2(�m; q))�m:q . Thus, c2(�m; q) and hence max

j 6=n
jajPj=anPnj(cos �m) tend
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to in�nity as m ! 1, which implies (8). From (8) the proof of (7) is straightfor-
ward, using that Pn(cos �) is continuous and has a �nite number of zeros in [0; 2�],
a compact set.

Tu prove (6) note that dm = rmj sin(�� �m)j and

anrm =
�
a0r

�n+1
m P0(cos �m) + a1r

�n+2P1(cos �m) +

+ � � �+ an�1Pn�1(cos �m))Pn(cos �m)

so that

lim
m!1

dm =
��an�1Pn�1(cos �)=an

�� lim
m!1

��sin(� � �m)=Pn(cos �m)
�� :

From (6) and (8) it follows that both the numerator and denominator of the ratio
on the right approach zero as n!1. Applying L'Hospital's rule yields

lim
m!1

dm =
��an�1Pn�1(cos �)=anP 0n(cos �) sin �

�� ;

which proves (6) since Pn(cos �) = 0 implies the following three facts: cos � 6= �1
(see [3, p. 178]), Pn�1(cos �) 6= 0 and P 0n(cos �) = 0. The second fact follows the
recursion formula

(n+ 1)Pn+1(x)� (2n+ 1)xPn(x) + nPn�1(x) = 0 ([3, p. 178])

and the fact that P0(x) = 1 for all x. The third fact follows from the second fact
and the recursion formula

(x2 � 1)P 0n(x) = nxPn(x) � nPn�1(x) ([3, p. 179]):
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