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SOME SPECIAL SUBSPACES OF A FINSLER SPACE

Irena �Comi�c

Abstract. In the present paper are studied such subspaces of a Finsler space for which he
absolute di�erential of the tangent or normal vectors have special positions.

1. Introduction. The equation of a subspace Fm of a Finsler space Fn,
the de�nitions of the tangent vectors Bi�, the normal vectors N

�

i, and the induced

and intrinsic connection coeÆcients and curvature tensors are the same as in [6],
[2] and [3]; so they are omitted. The induced connection coeÆcients and curvature
tensors shall be denoted as usual by |.

Let us denote by TH(P ) the subspace of the tangent space of Fn at P (x; _x) =
(X i(u�);i� _u�) spanned by Bi� and by TV (P ) the subspace spanned by N

�

i.

The object of the present paper is to study special subspaces which satisfy
some of the following conditions at a �xed P for every displacement (du�; d _u�) on
the subspace Fm:

1) DBi� 2 TH , DN
�

i 2 TV , (DBi� 2 TH) ^ (DN
�

i 2 TV )

1a) DN
�

i = 0) DBi� 2 TH

1b) DBi� ) DN
�

i 2 TV

2) DBi� 2 TV

3) DN
�

i 2 TH

2a) = 3a) (DBi� 2 TV ) ^ (DN
�

i 2 TH)

for every � = 1; 2; . . . ;m, � = m+ 1; . . . ; n.

Cases 1a) and 1b) are special cases of 1); 2a) = 3a) is a special case of 2) or
3).
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For the case 1) the induced and intrinsic connection coeÆcients are the same

and the normal curvature
�

N(u; _u) = 0 for every curve u� = u�(s) trough P .
Theorem 1.1 gives equivalent conditions for Fm to satisfy the conditions of case 1)
for a �xed u and every _u.

For case 2) the subspace Fm is Riemannian with

0
R�

Æ

�
 = 0;
0
P�

Æ

�
 = 0;
0
S�

Æ

�
 = 0:

For case 3) we have

1
R�

�

�

= 0;

1
P�

�

�

= 0;

1
S�

�

�

= 0:

2. Case 1). DBi� 2 TH . For any subspace Fm of Fn we have

DBi� = (�
�Æ
� �du

� +A
Æ

� �Dl
�)BiÆ + (�

��

� �du
� +A

�

� �)N�
i;

DN
�

i = (��
�Æ

��du
� �A

Æ
��Dl

�)BiÆ + (�
��

� �
du� +A

�

� �
Dl�)N

�

i:

In the case 1) these formulae become

DBi� = (�
�Æ
� �du

� +A
Æ

� �Dl
�)BiÆ;(2.1)

DN
�

i = (�
��

� �
du� +A

�

� �
Dl�)N

�

i:(2.2)

In this case �
��

� �du
� +A

�

� �Dl
� = 0, for every du� and Dl� , so

(2.3) �
��

� �du
� = 0; A

�

� �Dl
� = 0

for all
�; � = 1; 2; . . . ;m � = m+ 1; . . . ; n:

From (2.1), (2.3) and

�
�

��� = ��
�

��� ; A��� = �A���

we obtain

(2.4) �
�

��� = 0 A��� = 0

for all
�; � = 1; 2; . . . ;m � = m+ 1; . . . ; n:

As for any subspace Fm we have

Dlk = Bk�Dl
� +H

k

�du
�

and for case 1)

Dlk = D(Bk�l
�) = Bk�Dl

�
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we conclude that in this case
H
k

�du
� = 0:

The above equation is true for any du� so that in case 1)

(2.5) H
k

� = 0; k = 1; . . . ; n � = 1; . . . ;m:

From (2.5) it follows that the corresponding equations for �
�Æ
� � and �

��

� �
reduce to

�
�

�
� = girB
r

(B

i
� � + ��ij kB

j k
� �)(2.6)

�
��

� �
= girN

�

r(@�N
�

i � Æ0t@ÆN
�

i�
�Æ
� + �

�i
j k

N
�

jBk�):(2.7)

Tensors A��
 and A��
 are determined by

A��
 = AijkB
i j k
� � 
 = L(u; _u)2�1 _@
g��(u; _u)(2.8)

A��
 = gijN
�

jL _@
N
�

i +AijkN
�

iN
�

jBk
 :(2.9)

The normal curvature
�

N of a curve u� = u�(s) of the subspace Fm in the

direction of
�

N i is given by

�

N(u; _u) = L�2(u; _u)�
��

� � _u
� _u� ( _u� = du�=dus)

From (2.3) if follows that

(2.10)
�

N(u; _u) = 0

for every curve u� = u�(s) through the point (u).

From (2.1) and (2.2) we obtain

[�D]Bi� =

Æ

�(d; Æ)B
i
Æ = f2�1

0
R
Æ
��
 [du

�Æu
 ]+

0
P�

Æ

�
 [du
��l
 ] + 2�1

0
S�

Æ

�
 [Dl
��l
 ]gBiÆ

(2.11)

[�D]N
�

i =

�

�(d; Æ)N
�

i = f2�1
1
R�

�

�

[du�Æu
 ]+

1
P �

�

�

[du��l
 ] + 2�1

1
S�

�

�

[Dl��l
 ]gN

�

i
(2.12)

It may be seen that in case 1)

0
R�

�

�
 ;
0
P�

�

�
 ;
0
S�

�

�


The de�nitions of curvature tensors given above and in the sequel are given in [6].
,

Some vector �eld �i(x(u)B� _u
�) de�ned on the subspace Fm, may be decom-

posed in the following way
�i = Bi��

� +N
�

i��
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Using the known formulae

[�D]�i = f2�1Rj
i
hk
[dxhÆxk ] + Pj

i
hk
[dxh�lk] + 2�1Sj

i
hk
[Dlh�lk]g�j

dxh = Bh�du
�

and for case 1)

Dlh = Bh�Dl
�

we get

(2.14) Rj
i
hk
�jBh k� 
 =

0
R�

"

�
�
�Bi" +

1
R�

�

�

��N

�

i

The above formula is true for tensors P and S. Comparing the coeÆcients of ��

and �� we obtain

(2.15)

a) Rj
i
hk
Bj h k� � 
 =

0
R�

"

�
B
i
"

b) Rj
i
hk
N
�

jB;h k� 
 =
1
R�

�

�

N
�

i

c) Pj
i
hk
Bj h k� � 
 =

0
P�

"

�
B
i
"

d) Pj
i
hk
N
�

jB;h k� 
 =
1
P�

�

�

N
�

i

e) Sj
i
hk
Bj h k�� 
 =

0
S�

"

�
B
i
"

f) Sj
i
hk
N
�

jB;h k� 
 =
1
S�

�

�

N
�

i

If we de�ne the induced covariant di�erentiations
1

> and
1

> for some mixed tensor
T � �
�� in the form

T � �
��

1

>
 = @
T
� �
�� �

_@{T
� �
�� �

�{


 � T � �
{ � �

� {

�
+

T � �
{ � �

� �
{ 
 � T � �

� � �
� �

� 
 + T � �
�� �

� �

� 


T � �
��

1

>
 =L _@
T
� �
�� � T � �

{ � A
{

� 
 + T � �
{ � A

�

{ 
�

T � �
� � A

�

� 
 + T � �
� � A

�

� 
 :

then the Bianchi identities ([6], (3.1)|(3.3)) for the case 1) reduce to

(2.16)

a)
0
R�

"

�


1

>Æ +
0
P�

"

[
jÆj
1

>�] +
0

R�
"

{[
A
{

�] Æ+

0
S�

"

Æ{

0
Ko

{

�
 �
0
P�

"

[
j{
_@Æ��

�{
j�] _u

� = �lÆA
"

�{

0
Ko

{

�
 ;

b)
1
R�

�

�


1

>Æ +
1
P �

�

[
jÆj
1

>�] +
1

R�
�

{[
A
{

�] �+

1
S�

�

Æ{

0
Ko

{

�
 �
1
P �

�

[
j{
_@Æ��

�{
j�] _u

� = �lÆA
�

�{

0
Ko

{

�
 ;

c) (
0
R�

"

�

1

>Æ +
0

P�
"

�{

0

Ko
{


Æ) + cycl(�
Æ) = 0;

d) (
1
R�

�

�


1

>Æ +
1

P�
�

�{

0

Ko
{


Æ) + cycl(�
Æ) = 0;
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e)
0
P�

"

�[
jÆj

1

>�] +A {

�] [Æ
0
P j�

"

{j
]
+

0
S�

"


�
1

>� +
0

Sj�
"

�[
]
_@Æ]�

��
{� _u

{ =

Ll[Æ _@
]�
�"
��;

f)
1
P�

�

�[
jÆj

1

>�] +A {

�] [Æ

1
P j�

�

{j
]
+

1
S�

�


�

1

>� +
1

Sj�
�

�[
]
_@Æ�

��

{� _u
{ =

Ll[Æ _@
]�
��

�� :

If we denote by Di the absolute di�erential in Fn which corresponds to the
displacement (diu

�; di _u
�) (i = 1; 2) in Fm then from (2.11), (2.12), (2.15a), (2.15b)

we have

([D2D1]Rj
i
hk
)Bj h k� � 
 =

0
R�

"

�


Æ

"(d1; d2)B
i
Æ�

0
R"

Æ

�


"

�(d1; d2)B
i
Æ �

0
R�

Æ

"


"

�(d1; d2)B
i
Æ�(2.17)

0
R�

Æ

�"

"


(d1; d2)B
i
Æ ;

([D2D1]Rj
i
hk
)N
�

jBh k� 
 =
1
R�

�

�



 

� (d1; d2)N
 

i�

1
R 

�

�



 

� (d1; d2)N
�

j �
1
R�

�

"



"

�(d1; d2)N
�

j�(2.18)

1
R�

�

�"


"


(d1; d2)N
"

j :

Formulae of type (2.17), (2.18) are satis�ed for tensors P and S and we may get
them substituting the letter R with P and S.

If the space Fn satis�es the relation

(2.19) [D2D1]Rj
i
hk

= 0

then from (2.17) and (2.18) we have

0
R�

"

�


Æ

"(d1; d2)�
0
R"

Æ

�


"

�(d1; d2)�

0
R�

Æ

"


"
�(d1; d2)�

0
R�

Æ

�"

"


(d1; d2) = 0;
(2.20)

1
R�

 

�



�

 (d1; d2)�
1
R 

�

�



 

� (d1; d2)�

1
R�

�

"



"

�(d1; d2)�
1
R�

�

�"


"


(d1; d2) = 0:
(2.21)

If the space Fn satis�es

(2.19) a) [D2D1]Pj
i
hk

= 0 or b) [D2D1]Sj
i
hk

= 0

then the induced curvature tensors of the subspace
0
P�

Æ

�
 ,
1
P�

�

�

,
0
S�

Æ

�
 ,
1
S�

�

�


satisfy the equations of type (2.20) and (2.21) and we get these equations when the
letter R is substituted by P or S.
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If (2.19) is true for every D1, D2, i.e., the tensor R is parallel on the subspace
Fm, then from (2.20) and (2.21) we obtain

(2.23)

a)
0
R�

"

�


0
R"

Æ

�{ �
0
R"

Æ

�


0
R�

"

�{ �
0
R�

Æ

"


0
R�

"

�{
�

0
R�

Æ

�"

0
R


"

�{
= 0

b)
0
R�

"

�


0
P "

Æ

�{ �
0
R"

Æ

�


0
P�

"

�{ �
0
R�

Æ

"


0
P �

"

�{
�

0
R�

Æ

�"

0
P 


"

�{
= 0

c)
0
R�

"

�


0
S"

Æ

�{ �
0
R"

Æ

�


0
S�

"

�{ �
0
R�

Æ

"


0
S�

"

�{
�

0
R�

Æ

�"

0
S


"

�{
= 0

d)
1
R�

 

�


1
R 

�

�{
�

1
R 

�

�


1
R�

 

�{
�

1
R�

�

"


1
R�

"

�{
�

1
R�

�

�"

0
R


"

�{
= 0

e)
1
R�

 

�


1
P 

�

�{
�
1
R 

�

�


1
P�

 

�{
�

1
R�

�

"


1
P �

"

�{
�

1
R�

�

�"

0
P 


"

�{
= 0

f)
1
R�

 

�


1
S 

�

�{
�

1
R 

�

�


1
S�

 

�{
�

1
R�

�

"


1
S�

"

�{
�

1
R�

�

�"

0
S


"

�{
= 0

If (2.23) is true for every D1, D2, then we easily obtain equations similar to
(2.22) for the tensors P and S.

We shall examine what form the intrinsic connection coeÆcients take for case
1. In the subspace Fm with respect to the intrinsic connection coeÆcients DBi�
and DN i

�
take the form

DBi� = [(�� Æ� � +� Æ
� �)du

� +A Æ
� �)du

�Dl�]BiÆ + (���� �du
� +A �

� �Dl
�)N

�

i

DN i

�
= �(��Æ��du

� +AÆ��Dl
�)Di

Æ + (�� �� �du
� +A �

� �Dl
�)N

�

i:

As

� ��� = �
��

� � �A �
� {A

{

��

�

N;

A��
 = A��
 ; A��� = A��� ;

Dl� = Dl� = �A��

�

Ndu


we have in case 1)

���� � = �
��

�� = 0(2.24)

A��� = A��� = 0(2.25)

Dl� = Dl�

From the last equation and

Dlk = Bk�Dl
� = Hk

�du
�

it follows that
Hk
� = 0

From
� Æ
� � = �AhkjB

j
�g
�Æ(Hh

�B
k
� �Bh�H

k
� )
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and Hk
� = 0 we get immediately

(2.26) � Æ
� � = 0

As �
�
��� and ����� are connected by

����� = �
�
��� +AikjB

j
�(H

i
�B

k
� � Bi�H

k
� )�A��ÆA

Æ
��

�

N

using Hk
� = 0,

�

N = 0 we have

(2.27) ���� = �
�
��� :

As

(2.28) A �
� � = A

�

� �

for any subspace from (2.24) | (2.28) we have:

Theorem 2.1. If the subspace Fm of the Finsler space Fn has the property

DBi� 2 TH for the mixed lineelement P (u; _u) and every (du�; _du�), then the induced

and intrinsic conneetion coeÆcients are the same, from which it follows that the

induced and intrinsic curvature tensors are the same, and satisfy the same equations

at P.

In all previous equations every quantity and tensor was considered at the
�xed lineelement P (u; _u). Let us denote by HFm the subspace of case 1) for all
lineelements (u; _u) where u is a �xed point and _u is any direction in the subspace.
Then we have the following:

Theorem 2.2. The subspace Fm of the Finsler space Fn is HFm i� one of

the following equivalent equations (2.1) (2.5) or (2.10) is satis�ed for all directions

_u at �xed point _u.

Proof. From the de�nition it is obvious that the subspace Fm is HFm i� (2.1)
for �xed u and _u. Furthermore

(2.1) ) (2.4) ) (2.5)

To prove (2.5) ) (2.1) from lk = Bk�l
�, gij(x; _x)N

�

ilj = 0 we have

gijDN
�

ilj + gijN
�

iDlj = 0

From (2.5) and the equation above we obtain gijDN
iBj�l

� = 0 for all l�; so

DN
�

iDlj = (�� �� �du
� +A

�

� �Dl
�)N

�

i

from which (2.1) follows.

To prove (2.5), (2.10) i. e., H
k

� = 0,
�

N = 0 for all _u and � = m+1; . . . ; n
we have the relation

H
i

�l
� = �

��

� �l
�l�N

�
=

�

N(u; _u)N
�

i:
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3. Case 2). DBi� 2 TV .

In this case the absolute di�erentials of tangent and normal vectorc take the
form:

DBi� = (�
��

� �du
� +A

�

��Dl
�)N

�

i(3.1)

DN
�

i = (�
� Æ

� �du
� +A �

� �Dl
�)BiÆ + (�

� �

��du
� +A

�

� �Dl
�)N

�

i:(3.2)

As in this case A �
� � = 0, we have:

(3.3) A��
 = 2�1L(u; _u) _@
g��(u; _u) = 0;

from which we conclude that the metric tensor of the subspace is not a function of
the direction _u, i. e.,

g�� = g��(u)

and the subspace Fm of the Finsler space Fn is Riemannian. From the equations

(3.4)
���
 +���
 = �

�
��
 �A��ÆA

Æ

�


�

N

A��
 = 0; �
�
��
 = 0;

we obtain that in case 2) the intrinsic connection coeÆcient is the tensor ����
 ,
i.e. ���
 = ����
.

The other connection coeÆcients are obtained from the same formulae as in
any other subspace.

Using the equations A
Æ

�� = 0, �
� Æ
�� = 0 for case 2) we get

(3.5)

[�D]Bi� =
�
2�1�

� Æ

� [��
� Æ

j�j 
][du
�Æu
 ] + (�

��

� �A
Æ

� 
 � �
� Æ

� �A
�

�
)[du
��l
 ]+

2�1A
�

� [�A
Æ

j�j 
][Dl
��l
 ]

	
BiÆ +

�
2�1(@[
�

� �

j�j�] + �
� �

� [��
� �

j�j 
])[du
�Æu
 ]+

(L _@
�
��

� � � @�A
�
� 
 �A

�

� ��
� �

� 
 + �
� �

��A
�

� 
)[du
��l
 ]+

2�1(L _@[
A
�

j�j�] +A
�

� [�A
�

j�j 
])[Dl
��l
 ]

	
N
�

i:

[�D]N
�

i =
�
2�1(@[
�

� Æ

j�j�] + �
� Æ

j�j [
]�
� �

j�j�])[du
�Æu
 ]+

2�1(L _@
�
� Æ

� � � @�A
Æ

� 
 +A
Æ

� 
�
� �

� � �A
�

� 
�
� Æ

� �)[du
��l
 ]+

2�1(L _@[
A
Æ

j�j�] +A
�

� [�A
Æ

j�j 
])[Dl
��l
 ]

	
Bi�

�
2�1(@[
�

� �

j�j�] + �
� Æ

� [��
� �

jÆj 
] + �
�  

� [��
� �

j j 
])[du
�Æu
 ]+

(L _@
�
� �

� � � @�A
�
� 
 + �

� 

��A
�
 
 �A

 

� 
�
� �

 � �A
Æ

� 
�
� �

Æ � + �
� Æ

� �A
�

Æ 
)[du
��l
 ]+

2�1(L _@[
A
� �
j�j�] �A  

� [�A
�

j j 
] +A
Æ

� [�A
�

jÆj 
)[du
��l
 ]:

Comparing the above formulae with those in [6] we obtain that in case 2) the
curvature tensors

0
R�

Æ

�
 ;
0
P�

Æ

�
 ;
0
S�

Æ

�
 :
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and some others are reduced, because of �
� Æ
� � = 0, A

Æ

�� = 0.

4. Case 3). DN
�

i 2 TH .

In this case the absolute di�erentials of tangent and normal vectors take the
form:

DBi� = (�
� Æ
��du

� +A
Æ

� �Dl
�)BiÆ + (�

� �

� �du
� +A

�

��Dl
�)N

�

i;(4.1)

DN i = (�
� Æ

� �du
� +A

Æ

� �Dl
�)BiÆ(4.2)

Also
�
� �

� 
 = 0; A
�

� 
 = 0;

hence

�
� �

� 
 =
�

N i(@
N
�

i � @ÆN
�

i�
�Æ

 + �

�i
jkN

�

jBk
 +AijkN
�

jH
k


) = 0;

A
�

� 
 =
�

N i(L _@
N
�

i +AijkN
�

jBk
 ) = 0:

The other connection coeÆcients we get from the same formulae as in any other
subspace.

We also have that the absolute di�erentials of tangent and normal vectors
take the form:

[�D]Bi� =
�
2�1(

0
R�

"

�
 + �
��

� [��
� "

j�j 
])[du
�Æu
 ]+

(
0
P�

"

�
�
��

� �A
"

� 
 � A
�

�
�
� "

� �)[du
��l
 ] + 2�1

0
S�

"

�
A
�

� [�A
"

j�j 
])[Dl
��l
 ]

	
Bi"+

2�1
0
R�

�

�
 [du
�Æu
 ] +

0
P�

�

�
 [du
��u
 ] + 2�1

0
S�

�

�
 [Dl
��l
 ]N

�

i;

[�D]N
�

i =
�
2�1(

0
R�

"

�

[du�Æu
 ] +

0
P �

"

�

[du��u
 ] +

0
S�

"

�

[du��u
 ]

	
Bi"+

2�1(�
� {

� [�(�
� �

j{j
][du
��u
 ] + (A

�

{ 
�
� {

�� �A
{

�
�
� �

{ �)[du
��l
 ]+

2�1A
{

� [�A
�

j{j 
] + [Dl��l
 ]
	
N
�

i:

Finally we have
1
R�

�

�

= 0;

1
P�

�

�

= 0;

1
S�

�

�

= 0:

5. Case 2a) or 3a) (DBi� 2 TV ) ^ (DN i 2 TH).

In this case we have

(5.1) �
��
�
 = 0; A

�

� 
 = 0; A
�

� � = 0; �
� �

� � = 0

and

DBi� = (�
��

� �du
� + A

�

��Dl
�)N

�

i(5.2)

DN
�
i = (�

��

� �du
� +A

�

� �Dl
�)Bi�(5.2)
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For the absolute di�erential of tangent and normal vectors we obtain:

(5.4)

[�D]Bi� =
�
2�1�

� Æ

� [��
� Æ

j�j 
][du
�Æu
 ] + (�

��

� �A
Æ

� 
 � �
� Æ

� �A
�

�
)[du
��l
 ]+

2�1A
�

� [�A
Æ

j�j 
][Dl
��l
 ]

	
BiÆ+

�
2�1(@[
�

� �

j�j�][du
��l
 ] + (L _@
�

� �

� � � @�A
�
� �)[du

��l
 ]+

2�1(L _@[
A
�

j�j�])[Dl
��l
 ]

	
N
�

i;

(5.5)

[�D]N
�

i =
�
2�1(@[
�

� �

j�j�][du
�Æu
 ] + (L _@
�

� �

� � � @�A
�

� Æ)[du
��l
 ]+

2�1L _@[
A
�

j�j�][Dl
��l
 ]

	
Bi�+

�
2�1�

� Æ

� [��
� �

jÆj 
][du
�Æu
 ] + (�

� Æ

� �A
�

Æ 
 � �
� �

Æ �A
Æ

� 
)[du
��l
 ]+

2�1A Æ
� [�A

�

jÆj 
][Dl
��l
 ]

	
N
�

i:

We also have:
0
R�

Æ

�

= 0;

0
P�

Æ

�

= 0;

0
S�

Æ

�

= 0

1
R�

�

�

= 0;

1
P�

�

�

= 0;

1
S�

�

�

= 0:

The intrinsic connection coeÆcients are:

����
 = ����
 ; ���� = 0; A��� = 0; A��
 = 0

and the corresponding equations for the intrinsic curvature tensors are the same as
(4.6), (4.7) except for

0
R�

Æ

�

= �@[
�

Æ
j�j�] +� {

� [� +� Æ
j{j
]:
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