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DISCUSSING GRAPH THEORY WITH A COMPUTER II,

THEOREMS SUGGESTED BY THE COMPUTER

Drago�s M. Cvetkovi�c

Abstract. The formulation and proof of several theorems in graph theory as well as
in other areas of mathematics have been found after testing some special cases on a computer.
Some results of this type are described in this paper. Special attention is paid to the interactive
programming system \Graph" (described in [7], the �rst part of this paper) in which a lot of
graph theoretical algorithms have been implemented and whose purpose is, among other things,
to enable quick formulation, checking, or disproving of conjectures in graph theory.

The computation of extensive tables of cubic graphs [1], which also included
other information about these graphs, gave several ideas for subsequent investiga-
tions. One such idea was that of ordering graphs lexicographically according to
their eingenvalues; this is a natural way of ordering graphs. (This topic is also dis-
cussed in [5]). Looking at these tables one of the �rst observations was the fact that
cubic graphs with bridges were never bipartite. This led to the following theorem
which could serve as a nice exercise in teaching of graph theory.

Theorem 1. Let G be a regular graph: of odd degree r (r � 3) having a

bridge. Then G is not bipartite.

Proof I. According to well-known theorems, any 1-factor of a regular graph of
odd degree contains each bridge of the graph and, on the other hand, any regular
bipartite graph has a factorization into 1-factors.

This contradiction proves the theorem.

Proof II. Without lose of generality assume that G is connected. After re-
moving a bridge from G we get two connected components. Suppose G is bipartite
and consider one of the mentioned components G1. G1 must be bipartite; assume
that it has n1, n2 vertices in its respective parts. Vertex degrees of G1 are r except
for one which is r � 1. The number of edges of G1, counted in two ways, gives the
relation n1r = n2r � 1, i.e. (n2 � n1)r = 1, which is impossible since r > 1.

This completes the proof.
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Another theorem obtained in just the same may is the following one:

Theorem 2. Let G be a cubic graph having exactly one bridge. Then the

order of the automorphism group is a power of two.

The proof is left to the reader.

Other examples of theorems suggested by a computer can be found in [3]. It
is well known that a connected regular graph is strongly regular if and only if it has
exactly 3 distinct eigenvalues. For a graph operation called NEPS (noncomplete
extended p-sum of graphs), the spectrum of the resulting graph can be expressed in
terms of spectra of graphs on which the operation is performed (see, for example,
[6], p. 69). An experiment on a computer has shown that in some examples under
some conditions the NEPS of complete graphs has just 3 distinct eigenvalues. This
led to some conjectures which were proved and gave some constructions of strongly
regular graphs and symmetric block designs.

On the other hand, in paper [2] the brute force of the computer was used to
complete the proof of a theorem.

Inspired, among other things, by these examples and similar experience of
other researchers, the author of this paper has undertaken the implementation
of an interactive programming system, called \Graph", for the classi�cation and
extension of the knowledge in the �eld of graph theory. The basic ideas of the
system \Graph" are described in (4). The system contains a subsystem for solving
problems on particular graphs which basically is meant for quick checking, posing
and disproving conjectures in graph theory. This part of the system is described
with some detail in [7]. We shall repeat here a few basic facts about it.

The work with \Graph" consists of a dialogue in (a formalized subset of) the
natural English language. Graphs and other objects enter into the system under
names given by the user. After typing the command \SET G." the user can draw a
graph on the screen by a light pen and the system will memorize this graph under
the name G. The picture of any graph G in the system can be obtained on the
screen by the command \DRAW G." Using again the light pen the user can modify
the picture after typing \MODIFY G.". A graph can also be de�ned by typing
its edges; for example, by the command \SET G= (4; 5) 1 2; 2 3; 3 4; 4 1; 1 3."
a graph G is de�ned which has 4 vertices and 5 edges, the edges given by its
endpoints. The user can give orders to the system to perform several tasks with
graphs de�ned in the system, as the following commands illustrate: \TYPE G.",
\FORGETG.", \CHECK WHETHER G IS PLANAR." \DETERMINE RADIUS
OF G.", \FORM H PRODUCT OF G1 AND G2.", \CREATE G A RANDOM
GRAPH ON 15 POINTS.", etc.

The system \Graph" is written in FORTRAN IV and it runs now on a PDP-
11/34 computer. With slight modi�cations it can be installed at any computer, at
least in principle.

We shall describe some of our �rst experience in working with the system
\Graph".
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1. The graphs C4[K, andK1;4 are known to be the smallest pair of cospectral
non-isomorphic graphs1. The curiosity of the author of this paper was aroused by
the fact that components of the product of P3 with itself (see Fig. 1) are just
the graphs C4 and K1;4. As it is well-known, the product of any two connected
bipartite graphs has exactly two components. It was natural to ask whether these
two components always give rise to a pair of cospectral non-isomorphic graphs as
they do in the above case. The facilities of the system \Graph" enable one to check
conjecture on examples very easily. Positive results in a few examples convinced
the author that the conjecture is true and we have now the following theorem (after
a de�nition).

Fig. 1

De�nition. Two graphs are said to be almost cospectral if their non-zero
eigenvalues (and their multiplicities) coincide.

Theorem 3. If G and H are connected bipartite graphs then the graph G�H

has exactly two components which are almost cospectral.

Proof. By appropriate labeling of vertices, the adjacency matrices of G and
H can be represented in the formO BT

B O

 ;
O CT

C O

 ;
where B and C are (0; 1) matrices. Vertices of G �H can be ordered so that the
adjacency matrix of G�H takes the form

O O O BT 
 CT

O O BT 
 C O

O B 
 CT O O

B 
 C O O O


:

It remains to prove that matrices

(1)

 O BT 
 CT

B 
 C O

 ;
 O BT 
 C

B 
 CT O


which represent adjacency matrices of components of G
H , have the same nonzero
eigenvalues. The squares of the matrices (1) are:

(2)

B
TB 
 CTC O

O BBT 
 CCT

 ;
B

TB 
 CCT O

O BBT 
 CTC

 :
1Although it is very likely that many persons discovered this pair of graphs, it seems that

the author's thesis (Graphs and their spectram Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat.
Fiz. No 354 | No 356 (1971), 1{50) was the �rst published paper mentioning these graphs
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Since matrices CTC and CCT have the same nonzero eigenvalues, the same
holds for matrices (2), and hence the theorem is true.

If the components arising from the theorem have the same number of vertices,
then they are cospectral. To derive a necessary and suÆcient condition for that,
suppose that matrices B and C have orders m1 � n1 and m2 � n2 respectively.
Then the matrices (1) are of orders m1m2 + n1n2 and m1n2 +m2n1 respectively.
The di�erence of these numbers

m1m2 + n1n2 � (m1n2 +m2n1)� (m1 � n1)(m2 � n2)

is equal to 0 if and only if one of the matrices B, C is a square matrix. So we can
formulate the following corollary;

Corollary. Components of G � H from Theorem 3 are cospectral if and

only if one of the bipartite graphs G, H have the same number of vertices in both

parts.

It turned out that Theorem 3 has already been discovered by C. D. Godsil
and B. McKay [8]. Now we have the following conjecture whose veri�cation would
give a generalization of Theorem 3.

Conjecture. If the NEPS of bipartite graphs is disconnected (see [6], p.
204) its components are almost cospectral.

2. The ten self-complementary graphs on 8 vertices have been put into the
system and several their properties (e.g. vertex degrees, spectrum etc.) have been
examined. It turned out that all 10 graphs had an even number of triangles. This
gives the rise to the following theorem.

Theorem 4. A self-complementary graphs G on n = 4k (k 2 N) vertices

contains an even number of triangles.

Proof. Let d(x) be the degree of the vertex x and let X be the vertex set of
G. Since t, the number of triangles of G, is equal to the number of sets of three
mutually non-adjacent vertices, we have

2t+
1

2

X
x2X

d(x)(n � 1� d(x)) =

�
n

3

�
:

Since n = 4k implies

�
n

3

�
= 4s (s 2 N), we get

t = 2s�
1

4

X
x2X

d(x)(n� 1� d(x)):

As it is well-known, any permutation � of X which takes G into G consists of cycles
whose lengths are divisible by 4. The product d(x)(n � 1� d(x)) is even and does
not depend on x if x runs over vertices forming a cycle of �. Therefore the sumP

x2X d(x)(n � 1� d(x)) is divisible by 8 and the theorem follows from (3).
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Remark. Theorem 4 does not hold for self complementary graphs on 4k + 1
vertices since there is a self complementary graphs on 5 vertices that has just one
triangle.

3. According to Mathematical Reviews 80 k: 05079 the following conjecture
has been posed in [9]:

For m � 3 and n � 0, among unicyclic graphs with m+ n vertices and cycle
length m the largest eigenvalue of the graph Cm � Pn (Cm with Pn attached at a
vertex) is strictly smallest.

Using system \Graph" the conjecture has been disproved very quickly. An
ad hoc counterexample is provided by C19 � P2 with largest eigenvalue 2.0945 and
C19 with two pendant lines attached to two vertices of C19 which are at distance 5
with largest eigenvalue 2.0880.

Several other investigations involving system \Graph" are in progress.
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