ON SUMS INVOLVING RECIPROCALS OF CERTAIN ARITHMETICAL FUNCTIONS

Paul Erdös, Aleksandar Ivić

1. Introduction and statement of results. Let as usual $\omega(n)$ and $\Omega(n)$ denote the number of distinct prime factors and the number of total prime factors of n respectively, and let P(n) denote the largest prime factor of $n \ge 2$. Our aim is to estimate certain arithmetical sums (some of these estimates were posed an open problems in [4]) which will exhibit the similarities and differences in behaviour of $\omega(n)$ and $\Omega(n)$. Our first results are contained in the following theorems.

Theorem 1. For $x \ge x_0$ and some constants $0 < C_2 < C_1$ we have

$$(1.1) x \exp\left(-C_1(\log x \cdot \log\log x)^{1/2}\right) \leqslant \sum_{2 \leqslant n \leqslant x} n^{-1/\omega(n)} \leqslant$$

$$x \exp\left(-C_2 (\log x \cdot \log \log x)^{1/2}\right).$$

Theorem 2. For $x \ge x_0$ and some constants $0 < C_3 < C_4$ we have

(1.2)
$$x \exp(-C_3(\log x)^{1/2}) \leqslant \sum_{2 \leqslant n \leqslant x} n^{-1/\Omega(n)} \leqslant x \exp(-C_4(\log x)^{1/2}).$$

Here $\exp y = e^y$, and these theorems show that the sum appearing in (1.1) is of a lower order of magnitude than the sum in (1.2). Further we conjecture that for some C, D > 0

(1.3)
$$\sum_{2 \le n \le x} n^{-1/\omega (n)} = x \exp(-(C+o(1))) (\log x \cdot \log \log x)^{1/2}),$$

(1.4)
$$\sum_{2 \le n \le x} n^{-1/\Omega(n)} = x \exp(-D + o(1)) \log x)^{1/2}.$$

It was shown in [7] (for a still sharper result see [8]) that

(1.5)
$$\sum_{2 \le n \le x} 1/P(n) = x \exp\left(-\left(\sqrt{2} + o(1)\right) (\log x \cdot \log \log x)^{1/2}\right),$$

4 Publications de l'Institut Mathématique

and it seems interesting to investigate how the sum in (1.5) is affected when 1/P(n) is replaced by $\Omega(n)/P(n)$ or $\omega(n)/P(n)$. We are able to do this in the former case, and if as usual $f \ll g$ (which is the same as f = O(g)) means that $|f| \ll Cg$ for some absolute C > 0, then we have

Theorem 3.

(1.6)
$$(\log x/\log\log x)^{1/2} \sum_{2 \leqslant n \leqslant x} 1/P(n) \leqslant \sum_{2 \leqslant n \leqslant x} \Omega(n)/P(n) \leqslant$$

$$\leqslant (\log x \log\log x)^{1/2} \sum_{2 \leqslant n \leqslant x} 1/P(n).$$

For some related problems with $\omega(n)$ we refer the reader to [6], and we remark that the upper and lower bound in (1.6) differ only by a factor of $\log \log x$. A classical result of G.H. Hardy and S. Ramanujan (see [9]) states that $\omega(n)$ and $\Omega(n)$ both have average and normal order $\log \log n$, but Theorem 3 shows that replacing 1/P(n) by $\Omega(n)/P(n)$ changes the sum by a factor of $(\log x)^{1/2+o(1)}$, which is much larger than the normal order of $\Omega(n)$. It may be also remarked that Theorem 3 remains valid if P(n) is replaced by

(1.7)
$$\beta(n) = \sum_{p \mid n} p, \text{ or } B(n) = \sum_{p^{a} \mid n} ap.$$

Here and later p denotes primes; $a \mid b$ means that a divides b and $p^k \mid m$ means $p^k \mid m$ and $p^{k+1} \nmid m$. The functions $\beta(n)$ and $\beta(n)$ are additive and they were investigated in [1], [4] Ch. 6, [5], [7] and [8]. Though the difference in asymptotic behaviour of sums with 1/P(n), $1/\beta(n)$ and $1/\beta(n)$ was discussed in [5], in Theorem 3 this is irrelevant in view of (1.5) and

$$(1.8) P(n) \leqslant \beta(n) \leqslant B(n) \leqslant P(n) \log n,$$

so that following the same proof we obtain (1.6) with P(n) replaced by $\beta(n)$ or B(n).

To formulate our last result suppose that $\omega(n) \geqslant r$, where $r \geqslant 2$ is a fixed integer, and further suppose that $P_1(n) > P_2(n) > \cdots > P_r(n)$ are the r largest prime factors of n written in decreasing order. In this notation $P(n) = P_1(n)$, and it may be mentioned that questions involving $P_r(n)$ were discussed extensively in [1] and [2]. The asymptotic behaviour of the summatory function of $1/P_1(n)$ is given by (1.5), and it is interesting to note that a different type of asymptotic formula holds if we consider the summatory function of $1/P_r(n)$, $r \geqslant 2$. This is shown by

Theorem 4. There is a constant $B_2 > 0$ such that

(1.9)
$$\sum_{n \leq x} 1/P_2(n) = B_2 x/\log x + O(x(\log \log x)^2/\log^2 x),$$

and if $i \ge 3$ is a fixed integer there is a constant $B_i > 0$ such that

(1.10)
$$\sum_{n \le x} 1/P_i(n) = (B_i + o(1)) x (\log \log x)^{i-2}/\log x.$$

In (1.9) \sum denotes summation over those n for which $\omega(n) \ge 2$, while in (1.10) \sum denotes summation over those n for which $\omega(n) \ge i$.

2. Proof of Theorem 1 and Theorem 2. We begin by proving the lower bound in (1.1). Let A_k be as on p. 152 of [4] defined by

$$(2.1) A_k = \{n : (n \leq x) \land (\mu^2(n) = 1) \land (P(n) \leq x^{1/k})\},$$

where μ is the Möbius function and $k(\ll \log x/\log \log x)$ is a large integer which will be suitably chosen. Since $\mu^2(n) = 1$ means that n is squarefree, i.e. that n is a product of different primes, and since by the prime number theorem there are at least $U = 3 k x^{1/k}/(4 \log x)$ primes not exceeding $x^{1/k}$, we have

$$\sum_{n \in A_k, \ \omega(n) = k} 1 \geqslant \binom{U}{k} = \frac{U(U-1) \cdot \cdot \cdot (U-k+1)}{k!} \geqslant \left(\frac{2}{3} U\right)^k / k!,$$

provided that

$$(2.2) U - k + 1 \geqslant 2 U/3.$$

Noting that for $k \ge 6$ we have $(k/2)^k \ge k!$ it follows that

(2.3)
$$\sum_{n \in A_k, \ \omega(n) = k} 1 \geqslant x \log^{-k} x.$$

Therefore we obtain

$$\sum_{2 \leqslant n \leqslant x} n^{-1/\omega(n)} \geqslant \sum_{n \in A_k, \ \omega(n) = k} x^{-1/k} \geqslant x \exp\left(-k \log \log x - (\log x)/k\right),$$

and the choice $k = k(x) = [(\log x/\log \log x)^{1/2}]$ gives the desired bound in (1.1), since (2.2) is easily seen to hold in this case.

We pass now to the proof of the upper bound in (1.1), abbreviating $\log \log x = \log_2 x$ and letting C denote (possibly different) positive, absolute constants. We shall use a classical inequality of G.H. Hardy and S. Ramanujan ([9], p. 265):

(2.4)
$$\sum_{n \le x, \ \omega(n) = k} 1 < Ex \log^{-1} x (\log_2 x + F)^k / k!,$$

where E, F>0 are absolute constants. We have

(2.5)
$$\sum_{2 \leq n \leq x} n^{-1/\omega(n)} = S_1 + S_2 + O(x^{1/2}),$$

where first trivially

4*

(2.6)
$$S_2 = \sum_{x^{1/2} < n \leqslant x, \ \omega(n) < (\log n / \log_2 n)^{1/2}} n^{-1/\omega(n)} \leqslant$$

$$\sum_{x^{1/2} < n \leq x} \exp\left(-(\log n \log_2 n)^{1/2}\right) \leq x \exp(-C(\log x \log_2 x)^{1/2}).$$

With $k = [C(\log x/\log_2 x)^{1/2}]$ we have from (2.4)

(2.7)
$$\sum_{n \leqslant x, \ \omega(n) \geqslant k} 1 \leqslant x \sum_{j \geqslant k} (C \log_2 x)^j / j! \leqslant x \exp\left(+ Ck \log_3 x - \frac{k}{2} \log k \right) \leqslant$$

$$x \exp\left(-C(\log x \log_2 x)^{1/2}\right),\,$$

where we used $\log k! > (k \log k)/2$. This gives then

(2.8)
$$S_{1} = \sum_{x^{1/2} < n \leqslant x, \ \omega(n) \geqslant (\log n / \log_{2} n)^{1/2}} n^{-1/\omega(n)} \leqslant \sum_{n \leqslant x, \ \omega(n) \geqslant C(\log x / \log_{2} x)^{1/2}} 1 \leqslant x \exp(-C(\log x \log_{2} x)^{1/2}),$$

and the upper bound in Theorem 1 follows from (2.5), (2.6) and (2.8).

To prove the lower bound of Theorem 2 we consider integers of the form $r=2^t m$, where $m \ge 1$ is an integer and $t=[\log^{1/2} x]$. We have $\Omega(r) \ge t$, and so for $r \le x$ we have $r^{-1/\Omega(r)} \ge x^{-1/t}$ which gives

$$\sum_{2 \leq n \leq x} n^{-1/\Omega(n)} \geqslant \sum_{r \leq x} x^{-1/t} \gg x^{1-1/t} 2^{-t} \gg x \exp(-C \log^{1/2} x),$$

as asserted. For the upper bound in (1.2) we need the estimate

(2.9)
$$\sum_{n \leqslant x, \Omega(n) \geqslant k} 1 \leqslant x \, 2^{-k/4}, \quad \text{if } k \geqslant (\log \log x)^2,$$

where the \ll -constant is uniform in k and x. This follows from (2.4) and

Lemma 1. Uniformly in k we have

$$(2.10) \qquad \sum_{n \leqslant x, \Omega(n) - \omega(n) \geqslant k} 1 \leqslant x 2^{-k/2}.$$

To prove (2.10) it suffices to assume that k is an integer and that $\Omega(n) - \omega(n) = k$. Every n > 1 may be written uniquely as n = qs, (q, s) = 1, where q is squarefree and s is squarefull (meaning $p \mid s$ implies always $p^2 \mid s$). But then we have $\Omega(n) - \omega(n) = \Omega(s) - \omega(s)$, and from

$$s \geqslant 2^{\Omega(s)} \geqslant 2^{\Omega(s) - \omega(s)} = 2^k$$

we infer that the left-hand side of (2.10) is bounded by

$$\sum_{s \leqslant x, \, s \geqslant 2^k} \sum_{q \leqslant x/s} 1 \ll x \sum_{s \geqslant 2^k} s^{-1} \ll x \, 2^{-k/2}.$$

Here we used the estimate $\sum_{s \ge y} s^{-1} \ll y^{-1/2}$, which follows by partial summation from the lementary estimate $\sum_{s \ge y} 1 \ll y^{1/2}$.

To obtain (2.9) we write simply

$$\sum_{n \leqslant x, \ \Omega(n) \geqslant k} 1 \leqslant \sum_{n \leqslant x, \ \omega(n) \geqslant k/2} 1 + \sum_{n \leqslant x, \ \Omega(n) - \omega(n) \geqslant k/2} 1$$

and use (2.4) (similarly as (2.7) is established) for the first sum on the right-hand side above and (2.10) for the second sum.

To finish the proof of theorem 2 we use (2.9) with $k = \log^{1/2} x$. Then we have

(2.11)
$$\sum_{2 \leq n \leq x} n^{-1/\Omega(n)} = S' + S'' + O(x^{1/2}),$$

where

(2.12)
$$S' = \sum_{x^{1/2} < n \leq x, \ \Omega(n) \leq k} n^{-1/\Omega(n)} \ll \sum_{n \leq x} x^{-1/2k} \ll x \exp(-C \log^{1/2} x),$$

(2.13)
$$S'' = \sum_{x^{1/2} < n \leqslant x, \ \Omega(n) > k} n^{-1/\Omega(n)} \leqslant \sum_{n \leqslant x, \ \Omega(n) \geqslant k} 1 \leqslant x \exp(-C \log^{1/2} x),$$

so that the upper bound in (1.2) follows from (2.11) - (2.13).

3. Proof of Theorem 3. We begin the proof of Theorem 3 and Theorem 4 by showing that in (1.6) we may restrict the range of summation to these $n \le x$ for which

$$(3.1) P(n) \leqslant \exp(4(\log x \log_2 x)^{1/2}) = H(x),$$

since trivially

$$\sum_{n \leqslant x, P(n) > H(x)} \Omega(n)/P(n) \leqslant x \log x \cdot \exp\left(-4\left(\log x \log_2 x\right)^{1/2}\right).$$

and (1.5) gives the true order of magnitude of $\sum_{2 \le n \le r} \Omega(n)/P(n)$ as

$$x \exp \left(-\left(\sqrt{2} + o(1)\right) (\log x \log_2 x)^{1/2}\right)$$

since $1 \le \Omega(n) \le \log x$ for $2 \le n \le x$. Threefore for n satisfying (3.1) we have

(3.2)
$$n \leq (P(n))^{\Omega(n)} \leq \exp(4 \Omega(n) (\log x \log_2 x)^{1/2}).$$

Since the contribution of $n \le x^{1/2}$ is trivially $\le x^{1/2}$ we may suppose also that $x^{1/2} < n \le x$, and so (3.2) gives

(3.3)
$$\Omega(n) \gg (\log x/\log \log x)^{1/2}$$

for *n* satisfying (3.1) and $x^{1/2} < n \le x$, producing at once the lower bound in Theorem 3.

For the upper bound in Theorem 3 we use (2.9) with $k = 10 (\log x \log_2 x)^{1/2}$. If $\sum_{k=0}^{\infty} x^k = 10 (\log x \log_2 x)^{1/2}$.

(3.4)
$$\sum' \Omega(n)/P(n) = \sum_{\Omega(n) < k}' \Omega(n)/P(n) + \sum_{\Omega(n) \ge k}' \Omega(n)/P(n) \ll$$

$$(\log x \log x_2)^{1/2} \sum_{n=1}^{\infty} 1/P(n) + x \exp(-2(\log x \log_2 x)^{1/2}) \ll (\log x \log_2 x)^{1/2} \sum_{n\leq x} 1/P(n),$$

where we used (1.5). This establishes the upper bound in (1.6).

- 4. Proof of Theorem 4. We shall give a detailed proof of (1.9), and indicate only the proof of the somewhat weaker general estimate (1.10). We begin by making first several simplifying assumptions.
 - a) By an estimate of N.G. de Bruijn [3] we have

$$\sum_{n \leqslant x, P_1(n) \leqslant \exp(\log x/\log_2 x)} 1 \leqslant x \log^{-2} x,$$

so we may assume that

(4.1)
$$p = P_1(n) > \exp \log x / \log_2 x$$
.

b) We may assume that $P_1^2(n)$ does not divide n, for otherwise

$$\sum_{n \leqslant x, p^2 \mid n, p > \exp(\log x/\log_2 x)} 1 \leqslant x \sum_{p > \exp(\log x/\log_2 x)} p^{-2} \leqslant x \log^{-2} x.$$

c) Suppose that $q = P_2(n)$ and $q^b || n$. Then we may assume $q^b \le \log^2 x$, since

$$\sum_{x \leqslant x, \ q > \log^2 x} 1/q \ll x \log^{-2} x,$$

$$\sum_{mqb \leqslant x, \ qb > \log^2 x, \ b \geqslant 2} 1/q \ll x \sum_{qb > \log^2 x, \ b \geqslant 2} q^{-b-1} \ll x \sum_{b \leqslant \log x/\log 2} 1/(b \log^2 x)$$

$$\ll x \log_2 x/\log^2 x.$$

d) We may assume that if $n = pq^b r$ with $P_1(r) < q$ and $r \ge 1$, then $r \le \exp(20(\log_2 x)^2) = F$. To see this note that if s^a divides r ($a \ge 2$, s prime) then similarly as in c) we may assume that $s^a \le \log^4 x$. Further we may assume $\omega(r) \le 5 \log_2 x$, since otherwise the number of $n \le x$ for which $\omega(n) > 5 \log_2 x$ is by [6] $O(x \log^{-2})$ and then

$$r \leq (\log^4 x)^{\omega(r)} \leq \exp(20 (\log_2 x)^2) = F$$
,

because if $s \parallel r$, then by c) we may assume $s < q \le \log^2 x$.

We proceed now with the proof of (1.9), noting first that by d) and the prime number theorem there are

$$xq^{-b}r^{-1}\log^{-1}x\left(1+O\left(\log_{2}^{2}x/\log x\right)\right)$$

prime numbers in the interval (exp (log $x/\log_2 x$), $xq^{-b}r^{-1}$]. Therefore we have

$$\sum_{n \le x} 1/P_2(n) = O(x \log_2^2 x/\log^2 x) + \sum_{qb \le \log^2 x} q^{-1} \sum_{P(r) < q, r \le F} \sum_{\exp(\log x/\log_2 x) < p \le xq^{-b_{r-1}}} 1$$

$$= O(x \log_2^2 x/\log^2 x) + x \log^{-1} x \sum_{qb \le \log^2 x} q^{-b-1} \sum_{P(r) < q} 1/r =$$

$$= B_2 x/\log x + O(x \log_2^2 x/\log^2 x).$$

Here we used the fact that the sum $S = \sum_{q} q^{-b-1} \sum_{P(r) < q} r^{-1}$ is bounded. To see this note that

$$\sum_{P(r) < q} r^{-1} = \sum_{j} \sum_{p_1 < \dots < p_j < q, a_1 \geqslant 1, \dots, a_j \geqslant 1} p_1^{-a_1} \cdot \dots \cdot p_j^{-a_j} \ll$$

$$\sum_{j} (\log \log q + 3)^j / j! \ll \exp(\log(2 \log q)) = 2 \log q,$$

and this implies that S is bounded. Furthermore the contribution of $q^b > \log^2 x$ and r > F is $O(x \log_2^2 \log^2 x)$, since

$$\sum_{pq^{b} r \leqslant x, \ P(r) < q, \ r > F} q^{-1} \ll x \sum_{r > F} r^{-1} \sum_{q^{b} > P(r)} q^{-b-1} \ll x \sum_{r > F} (rP(r))^{-1} \log x \ll x \exp(-0.5 (\log F \log_2 F)^{1/2}) \ll x \log^{-2} x,$$

where we used partial summation and (1.5) to estimate $\sum_{r>F} (rP(r))^{-1}$. This completes the proof of (1.9), where with q prime we have

$$B_2 = \sum_{q} f(q)/(q^2 - q); f(2) = 1, f(q) = \sum_{F(r) < q} r^{-1} \text{ if } q > 2.$$

The proof of (1.10) is similar to the proof of (1.9), but technically more difficult. The main term comes from (q, r, s_j) will be all primes in what follows)

$$x \log^{-1} x \sum_{q^{b} \leqslant \log^{2} x} q^{-1-b} \sum_{P(r) \leqslant q, \ r \leqslant F} r^{-1} \sum_{q < s_{1} < \cdots < s_{i-2} < p} s_{1}^{-a_{1}} \cdots s_{i-2}^{-a_{i-2}} = \cdots =$$

$$s_{1}^{a_{1}} \leqslant \log^{4} x, \dots, s_{i-2}^{a_{i-2}} \leqslant \log^{4} x$$

$$x \log^{-1} x \sum_{q^{b} \leqslant \log^{2} x} q^{-1-b} \sum_{P(r) < q, \ r \leqslant F} r^{-1} \sum_{s_{i-2} < x} (c_{i} + O(1)) s_{i-2}^{-1} (\log \log s_{i-2})^{i-3} =$$

$$= (B_{i} + o(1)) x (\log_{2} x)^{i-2} / \log x.$$

Here ... denotes that summation is being carried over s_1, \ldots, s_{l-3} with the use of

$$\sum_{p \le x} p^{-1} (\log_2 p)^k = \int_{3/2}^x t^{-1} (\log_2 t)^k d\pi(t) = (1 + o(1)) \int_{3/2}^x t^{-1} \log^{-1} t (\log_2 t)^k dt$$
$$= ((k+1)^{-1} + o(1)) (\log_2 x)^{k+1}$$

which follows from the prime number theorem $\pi(x) = \sum_{p \le x} 1 = \int_{3/2}^{x} \frac{dt}{\log t} + O(x \log^{-k} x)$ k > 0 is any fixed number). The o-term in (1.10) could be replaced by a O-term at the cost of some tehnical complications in the proof.

REFERENCES

- [1] K. Alladi, P. Erdös, On an arithmetic function, Pacific J. Math. 71 (1977), 275—294. [2] K. Alladi, P. Erdös, On the asymptotic behaviour of large prime factors of an integer, Pacific J. Math. 82(1979), 295—315.
- [3] N.G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors > y, Nederl. Akad. Wet. Proc. 54(1951), 50—60 and ibid. 28(1966), 239—247.
- [4] J.-M. De Koninck, A. Ivić, Topics in arithmetical functions, Notas de Matematica 72, Amsterdam, 1980.
- [5] P. Erdös, A. Ivić, Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Studia Scien. Math. Hungarica, 15 (1980), 183—199.
- [6] P. Erdös, J.-L. Nicolas, Sur la fonction »Nombre de facteurs premiers de n«, Séminaire Delange—Pisot—Poitou 1978/79, No. 32. 19pp.
- [7] A. Ivić, Sum of reciprocals of the largest prime factor of at integer, Arch. Math. 36 (1980), 57—61
- [8] A. Ivić, C. Pomerance, Estimates of certain sums involving the largest prime factor of an integer, to appear in Coll. Math. Soc. János Bolyai 34, Topics in classical number theory, North-Holland, Amsterdam.
 - [9] S. Ramanujan, Collected Papers, Chelsea, New York, 1962.

Mathematical Institute Hungarian Academy of Sciences Reáltanoda utca 13—15 H-1053 Budapest V, Hungary Katedra Matematike RGF-a Univerziteta u Beogradu Djušina 7, 11000 Beograd Jugoslavija

(Received 19 04 1982)