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ON SUMS INVOLVING RECIPROCALS OF CERTAIN ARITHMETICAL
FUNCTIONS

Paul Erdos, Aleksandar Dvié

1. Intreduction and statement of results. Let as usual w(n) and Q(n) de
note the number of distinct prime factors and the number of total prime
factors of n respectively, and let P(n) denote the largest prime factor of
n>2. Our aim is to estimate certain arithmetical sums (some of these esti-
mates were posed an open problems in [4]) which will exhibit the similarities
and diferences in behaviour of «(n) and Q(n). Our first results are contained
in the following theorems.

Theorem 1. For x>x, and some constants 0<C,<C, we have

(1.1 xexp(—C, (logx-loglog )3 2, n—Yem

2<n<x
xexp (—C, (log x - log log x)!/2)).
Theorem 2. For x>x, and some constants 0<C,<C, we have

(1.2) xexp (- C;(log )< 2, n—112® Lxexp(—C,(logx)1?).
2

<X

Here exp y=e?, and these theorems show that the sum appearing in (1.1)
is of a lower order of magnitude than the sum in (1.2). Further we conjec-
ture that for some C, D>0

(1.3) > n—Ue® = xexp (—(C+o(1)) (log x-log log x)1/2),
2

(1.4) > n—U2 @ = xexp (— D+ o (1)) log x)1?).
2<n<x

It was shown in [7] (for a still sharper result see [8]) that
(1.5) , 2 1/Pm)y=xexp(— (/2 +0(1)) (logx-log logx)l/z),
LNTX
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and it seems interesting to investigate how the sum in (1.5) is affected when
1/P (n) is replaced by Q (n)/P(n) or w(n)/P(n). We are able to do this in the
former case, and if as usual f<€g (which is the same as f=0{g)) means that
| f1<Cg for some absolute C>0, then we have

Theorem 3.

(1.6) (log x/log log x)*2 Z Pm< Z QP (<

< (log x loglog x)1/22<z< 1/P(n).

For some related problems with «(n) we refer the reader to [6]. and
we remark that the upper and lower bound in (1.6) differ only by a factor
of loglogx. A classical result of G.H. Hardy and S. Ramanujan (see [9])
states that « (n) and € (n) both have average and normal order loglogn, but
Theorem 3 shows that replacing 1/P (n) by € (n)/P(n) changes the sum by a
factor of (logx)/2+°®™, which is much larger then the normal order of Q(n).
It may be also remarked that Theorem 3 remains valid if P(n) is replaced by

(1.7 B)= 2 p, or B)= 2 ap.
paln
Here and later p denotes primes; a|b means that a divides b and p*| m
means p*|m and p"+1/r m. The functions B (n) and B(n) are additive and they
were investigated in [1], [4] Ch. 6, [5], [7] and [8]. Though the difference
in asymptotic behaviour of sums with 1/P(n), 1/B(n) and 1/B(n) was discussed
in {5}, in Theorem 3 this is irrelevant in view of (1.5) and

(1.8) P(m)<B(m<B(n)<P () logn,

so that following the same proof we obtain (1.6) with P(n) replaced by B (n)
or B(n).

To formulate our last result suppose that (n)>>r, where r>>2 is a fi-
xed integer, and further suppose that P, (n)>P,(n)>- - - >P,(n) are the r lar-
gest prime factors of n written in decreasing order. In this notation P (n)=
=P, (n), and it may be mentioned that questions involving P,(n) were discu-
ssed extensively in f1] and [2]. The asympto'uc behaviour of the summatory
function of 1/P,(n) is given by (1.5), and it is interesting to note that a diffe-
rent type of asymptouc formula holds if we consider the summatory function
of 1/P,(n), r=2. This is shown by

Theorem 4. There is a constant B,>0 such that

(1.9) > 1/P, (n) = B, x/log x + O (x(log log x)*/log? x),

n<{x

and if i=3 is a fixed integer there is a constant B;>0 such that

(1.10) 2 1/P;(n) = (B;+0(1)) x (log log x)'~*/log x.
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In (1.9) >’ denotes summation over those n for which «(n)>2, while
in (1.10) 2. denotes summation over those n for which e (n)>i.

2. Proof of Theorem 1 and Theorem 2. We begin by proving the lower
bound in (1.1). Let A, be as on p. 152 of [4] defined by

@D A= {n: (<) A @2 ()= 1) A(P (m)<x'¥)},

where p is the Mobius function and k(<logx/loglogx) is a large integer which
will be suitably chosen. Since p2(n)=1 means that n is squarefree, i.e. that n
is a product of different primes, and since by the prime number theorem the-
re are at least U =23 kx'*/(41ogx) primes not exceeding x'/%, we have

5 l}(U): vw-1)..--(U-k+1) >(—§~U)k/k!,

n= Ak, w (mM=k k k!

provided that
(2.2 U-k+1=2U/3.
Noting that for k=6 we have (k/2)*=k! it follows that

(2.3) > 1 >xlog*x.
nC A, o (n)=k

Therefore we obtain

> npUem> > x-lUkzxexp(-kloglogx - (log x)/k),
2<n<ix " n& Ak, o (Mm=k

and the choice k =k (x)=[(log x/loglog x)!/?] gives the desired bound in: (1.1).
since (2.2) is easily seen to hold in this case.

We pass now to the proof of the upper bound in (l.1), abbreviating
loglog x=1log, x and letting C denote (possibly different) positive, absolute con-
stants. We shall use a classical inequality of G.H. Hardy and S. Ramanu-

jan ([9], p. 265):
(2.4) > 1 <Exlog~'x(log, x + F)¥/k!,

n<x, o (n)=k
where E, F>0 are absolute constants. We have

(2.5) 2 nTUem=g 48,40 (x'?),

2<n<<x

where first trivially

(2.6) S, = > nte )<

x112<n<x, o (n)<(log nflogz n)1/2

2> exp(—(logn log,n)/%)< x exp(— C (log x log, x)!/2).

xt2<nx

4¢
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With k=[C (log x/log, x)"/?] we have from (2.4)
. k
2.7 > 1<x D (Clog, x)/j!<x exp(—l—Ck log3x———]ogk)<
n<x, o (n)=k =k 2
x exp (— C (log x log, x)'/?),
where we used logk!>(klogk)/2. This gives then

(2.9) S, = > n-lemg

x12<n<x, & (n)=(log nflog, )12

< xexp (- C(log x log, x)!/2),

n<ix, » (n)=C (log x/log,y x)112

and the upper bound in Theorem 1 follows from (2.5), (2.6) and (2.8).

To prove the lower bound of Theorem 2 we consider integers of the form
r=2'm, where m>>1 is an integer and ¢=[log!?>x]. We have Q(r)=t, and so
for r<x we have r~Y2®M > x-1r which gives

> nuemx > x~ Ut x1-1t )=t x exp (— ClogV2 x),

2<n<x r<x
as asserted. For the upper bound in (1.2) we need the estimate

2.9 2 1<x2-%4 if k>(loglog x)?,

n<<x, Q (n)=k

where the <-constant is uniform in k and x. This follows from (2.4) and

Lemma 1. Uniformly in k we have

2.10) > 1<€x2-k2,

n<x, Q (m)—o (y=k

To prove (2.10) it suffices to assume that k is an integer and that
QM) —ow(m)=k. Every n>1 may be written uniquely as n=gs, (g, s)=1,
where g is squarefree and s is squarefull (meaning p|s implies always p?|s).
But then we have Q(n)—w (n)=Q(s)-w(s), and from

S>29 (s)> 29 - () 2k

we infer that the left-hand side of (2.10) is bounded by

> > l<x D stlgx 2k,

s<x, 5222k g<x/s =22k

Here we used the estimate ), s~!<y-1/2 which follows by partial sum-

=y

mation from the lementary estimate », 1<y!2,

LSS 4
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To obtain (2.9) we write simply

1< 2 1+ > 1

n<<x, Q(n)=k n<<x, o (n)=k/2 n<x, Q (M) —o (n)=k[2

and use (2.4) (similarly as (2.7) is established) for the first sum on the right-
hand side above and (2.10) for the second sum.

To finish the proof of theorem 2 we use (2.9) with k=1logY2x. Then
we have

.11 S plem=§ 18410 (x112),
2<n<<x
where
2.12) S’ = > n=1190 & > x =12k & xexp (— Clog!2 x),
x12<n<x, Q (M)<<k n<ix
2.13) S = > nlemg > 1<xexp (—Clog!? x),
x12<n<x, Q (n)>k n<x, Q (n)y=2k

so that the upper bound in (1.2) follows from (2.11) — (2.13).

3. Proof of Theorem 3. We begin the proof of Theorem 3 and Theorem
4 by showing that in (1.6) we may restrict the range of summation to these
n<x for which

(3.1) P (n)<exp (4 (log x log, x)/2) = H (x),
since trivially

Q (n)/P (ny<x log x - exp (— 4 (log x log, x)!/2).

n<x, P(m)>H (x)

and (1.5) gives the true order of magnitude of >, Q(n)/P(n) as
2

X
xexp (—(/2+0 (1)) (log x log, x)1/2),
since 1<<Qn)<logx for 2<n<x. Threefore for n satisfying (3.1) we have
(3.2) n< (P (n)? ™ <Lexp (4 Q(n) (log x log, x)!/?).

Since the contribution of n<{x!/? is wivially <x'? we may suppose also
that x'2<n<x, and so (3.2) gives

3.3) Q (n) >(log x/log log x)1/2

for n satisfying (3.1) and xY?<n<x, producing at once the lower bound in
Theorem 3.
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For the upper bound in Theorem 3 we use (2.9) with k=10 (log x log, x)2,
If > denotes summation over those n<{x for which (3.1) holds, then

(3.4) QP = (§<k "Q(n)/P )+ N g}k Q)P ()<

(log x logx,)!/? 57 1/P (n) + x exp (— 2 (log x log, X)/?)< (fog x log, x)'/> > 1/P(n),
2

S 4

where we used (1.5). This establishes the upper bound in (1.6).

4. Proof of Theorem 4. We shall give a detailed proof of (1.9), and
incicate only the proof of the somewhat weaker general estimate (1.10). We
begin by making first several simplifying assumptions. ‘

a) By an estimate of N.G. de Bruijn [3] we have
1< xlog=?x,

n<<x, P1 (n)<<exp (log x/logz x)
so we may assume that
4.1) p =P, (n)>explog x/log, x).
b) We may assume that P} (n) does not divide n, for otherwise

1<x 2>, p2<xlog 2 x.
n<x, p? | n, p>exp (log x/log; x) p>exp (log x/logy x)
c) Suppose that g=P,(n) and ¢*|'n. Then we may assume g¢°<log®x,
since

2. 1/g<xlog=?x,

x<x, g>log2 x

ljg<x > g '<x 2 1/(blog?x)

mgb<<x, gb>log? x, b=>2 gb>log? x, b=>2 b<<log x/log2

< x log, x/log* x.

d) We may assume that if n=pg®r with P (r)<q and r=1, then r<
exp (20 (log, x)?) = F. To see this note that if s¢ divides r (¢>2, s prime) then si-
milarly as in ¢) we may assume that s?<log*x. Further we may assume
o (r)<5log,x, since otherwise the number of n<x for which «(n)>5log,x
is by [6] O (xlog=2) and then

r<(log* x)* "< exp (20 (log, x)*) = F,

because if s||r, then by ¢) we may assume s<g<log®x.

We proceed now with the proof of (1.9), noting first that by d) and
the prime number theorem there are

xg~tr=1log=1x (1 + O (log3 x/log X))
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prime numbers in the interval (exp(logx/log,X), xg=®r~']. Therefore we have

> 1P, (n) = O(x loga x/log?x) + 2 g% 2 > 1

n<lx gb<clog2x P(r)<q, r<<F exp(log x/log; x)<p<xq ~br—!

=0 (xlogix/log? x)+xlog=1x > g7t 2 1fr=

gb<Clog? x . Pn<q
=B, x/logx+ 0 (x log3 x/log? X).

Here we used the fict that the sum S=2¢-%~! 2> r~! is bounded.
q P(r)<q

To see this note that

> rt=> > Pt i<

P(ry<q J pi<:--<pj<qaiz=zl, ..., a1

2. (loglog g +3)//j! <exp (log (2 log g)) = 2 log g,
J

and this implies that S is bounded. Furthermore the contribution of g° >log? x

and r>F is O(x logglog2 X), since

g'<€x 2 rt 2 qhi<x 2 (rP(r) " logx<
r>F

pgbr<x, P(ry<q,r>F r>F gb=>P(r)
x exp(—0.5(log Flog, F))<xlog=2 x,

where we used partial summation and (1.5) to estimate > (rP(r)~!. This com-
r>F

pletes the proof of (1.9), where with g prime we have
B,=2f@I@—q): f@=1, f(@= 2 rtif ¢>2.
q F(ry<q

The proof of (1.10) is similar to the proof of (1.9), but technically more
difficult. The main term comes from (g, r, s; will be all primes in what
follows)

-1 —_ —a — O
xlog—lx Z qlb Z rl z 5, ‘...S‘._ZI 2 - e =
gb<Clog2 x P(r)<gq, r<<F g<an <+ - <8i-o<p
s‘l"<log‘ X, .. s,f’i'22<log‘ x

xlog=ix 2 g%t 3 ' 3 (g+0()siz(loglogs;_,) 3=

gb<log2 x P(ry<gq, r<<F Si—2<Xx

= (B;+0 (1)) x (log, x)'~*/log x.
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Here ... denotes that summatjon is being carried over s,, ..., 5_, with
the use of

X x
S p'(log, P = [ 17} (log, Ndm (1) =(1 +o(1)) [ 1 log™"1(log, 1)* dt
p<x 32 32

=((k+ 1)~ +0(1)) (log, x)**!

x
4
which follows from the prime number theorem w(x)=73 1= f d—+
p<<x 32 IOgt

+0(xlog *x) k>0 is any fixed number). The o-term in (1.10) could be
replaced by a O-term at the cost of some tehnical complications in the proof.
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