COMMON FIXED POINT THEOREMS FOR COMMUTING MAPS ON A METRIC SPACE

Vincenzo Conserva

Abstract. Results generalizing fixed point theorems of various authors and generalizing and unifying fixed point theorems of Jungck and Boyd-Wong are established.

Introduction. The purpose of the present note (which is entirely conceptual) is to present three common fixed point theorems. The first one follows J. Matkowski's ideas ([6]). The second one generalizes a fixed point theorem by the author ([2]). The third one, on the contrary, generalizes and unifies fixed point theorems by G. Jungck ([5]) and Boyd-Wong ([1]), following K. M. Das and K. Viswanatha Naik's ideas ([3]).

Everywhere in this paper (E, d) is a complete metric space. Furthermore, in 1 and 2 g will be a self-map on E.

Recently Matkowski proved the following

Theorem 1. Let $\alpha:[0, +\infty)^5 \rightarrow [0, +\infty)$ and let $\psi(t) = \alpha(t, t, t, 2t, 2t)$ for $t \ge 0$. Suppose that

- 1) for every $x \in E$ there exists a positive integer n = n(x) such that for all $y \in E$, $d(g^n x, g^n y) \le \alpha(d(x, g^n x), d(x, g^n y), d(x, y), d(y, g^n x), d(y, g^n y))$,
 - 2) a is non-decreasing with respect to each variable,
 - 3) $\lim \psi^n(t) = 0, \quad t > 0,$
 - 4) $\lim_{t\to +\infty} (t-\psi(t)) = +\infty$.

Then g has a unique fixed point $u \in E$ and for each $x \in E$, $\lim_{n \to \infty} g^n(x) = u$.

Now, let f be a self-map on E that commutes with g such that $\overline{f(E)} = f(E)$ and $g(E) \subset f(E)$. If we replace 1) and 4) above by the condition

- 1)₁ for every $x \in E$ there exists a positive integer n = n(f(x)) such that $d(g^n(f(x)), g^n(f(y))) \leq \alpha(d(f(x), g^n(f(x))), d(f(x), g^n(f(y))), d(f(x), f(y)), d(f(y), g^n(f(x))), d(f(y), g^n(f(y))))$
- 4)₁ there exists $x \in E$ such that $\max_{i \leq n \ (f(x))} d(f(x), g^i(f(x))) < \lim_{t \to +\infty} (t \psi(t)),$

then we obtain a common fixed-point for f and g.

- In 2, if $\psi:[0, +\infty) \to [0, +\infty)$ is non-decreasing continuos on the right, $\psi(t) < t$ for each t > 0, f is a continuous self-map on E that commutes with g such that $g(E) \subset f(E)$, and if, moreover, we suppose that
- a) for every $x \in E$ there exists a positive integer n = n(f(x)) such that $d(g^n(f(x)), g^n(f(y))) \le \psi(d(f(x), f(y)))$ for all $y \in E$,
- b) there exists an $x \in E$ such that, assuming $\beta = \max_{i \le n \ (f(x))} d(f(x), g^i(f(x)))$, there exists a $\delta > 0$ such that $\beta < \delta \psi(\delta)$,

then we obtain a common fixed-point theorem, of which a previous result of the author ([2]) is a particular case.

- In 3, if $\psi:[0, +\infty) \to [0, +\infty)$ is upper semicontinuous from the right and satisfies $\psi(t) < t$ for every t > 0, f is a self-map on E such that f^m , where m is any fixed positive integer, is continuous, $g: f^{m-1}(E) \to E$ is a map that commutes with f and, moreover, we suppose that
 - c) $g(f^{m-1}(E)) \subset f^m(E)$
 - d) $d(g(x), g(y)) \leq \psi(d(f(x), f(y)) \text{ for every } x, y \in f^{m-1}(E)$

then we obtain a common fixed point theorem of which Jungck's theorem is a particular case.

The following points are worth emphasizing:

- Theorem 2 and 3 can be naturally extended to a Hausdorff uniform space the uniformity of which is generated by a non empty family of pseudo-metric on it;
- To the best of the author's knowledge, no trace can be found in the literature of relations between g and ψ of the kind indicated by conditions 4), and b);
- condition $4)_1$, implies b). However, condition b) cannot be used instead of $4)_1$, at least not for the kind of proof presented below.

Finally, we shall use the following notations: N = the set of all positive integers, $R_{+} =$ the set of all nonnegative real numbers, $R_{+}^{*} = R_{+} - \{0\}$, $\lim' = \lim \inf$.

1. We begin this section by

Lemma 1. Suppose that $\psi: R_+ \to R_+$ is non-decreasing. If ψ^n , n = 0, 1... denotes the n-th iterate of ψ and if for every t > 0, $\lim_n \psi^n(t) = t$, then $\psi(t) < t$ holds.

Lemma 2. Let $\alpha: R_+^s \to R_+$, $f: E \to E$ and let $\psi(t) = \alpha(t, t, t, 2t, 2t)$ for $t \ge 0$. Suppose that

- i) a is non-decreasing with respect to each variable,
- ii) for every $x \in E$, there exists a positive integer n = n(f(x)) such that $d(g^n(f(x)), g^n(f(y))) \leq \alpha(d(f(x), g^n(f(x))), d(f(x), g^n(f(y))), d(f(x), f(y)), d(g^n(f(x)), f(y)), d(g^n(f(y)), f(y)))$ for all $y \in E$,

iii) $x \in E$ exists such that $\max_{i \leq n \ (f(x))} d(f(x), g^i(f(x))) < \lim_{t \to +\infty} (t - \psi(t))$. Then $\sup d(f(x), g^n(f(x))) < +\infty$ holds for every $x \in E$ that satisfy condition iii).

Proof. Let x be a point in E that satisfies iii) and put y = f(x), n = n(f(x)) and $\beta = \max_{i \leq n(f(x))} d(f(x), g^i(f(x)))$. By iii) there exists $\delta \in \mathbb{R}_+^*$, $\beta < \delta$ such that $\beta < t - \psi(t)$ for all $t \geq \delta$. Let $r \in \mathbb{N}$, $0 \leq r < n$ and put $d_k = d(y, g^{kn+r}y)$, $k = 0, 1, \ldots$ Let $j = \min\{i \in \mathbb{N} \mid \delta \leq d_i\}$. Evidently, $d_i < \delta$ for i < j.

Hence, by the triangle inequality

$$d(g^{n}y, g^{(j-1)n+r}y) \leq d(g^{n}y, y) + d(y, g^{(j-1)n+r}y) \leq \beta + d_{j-1} < 2d_{j}$$

$$d(g^{jn+r}y, g^{(j-1)n+r}y) \leq d(g^{jn+r}y, y) + d(y, g^{(j-1)n+r}y) \leq d_{j} + d_{j-1} < 2d_{j}.$$

Now, using i) and iii), one gets

$$d_{j} = d(y, g^{jn+r} y) \leqslant d(y, g^{n} y) + d(g^{n} y, g^{jn+r} y) \leqslant$$

$$\leqslant \beta + \alpha (d(y, g^{n} y), d(y, g^{jn+r} y), d(y, g^{(j-1)n+r} y), d(g^{n} y, g^{(j-1)n+r} y),$$

$$d(g^{jn+r} y, g^{(j-1)n+r} y)) \leqslant \beta + \alpha (d_{i}, d_{i}, d_{i}, 2d_{i}, 2d_{i}) = \beta + \psi (d_{i}),$$

i.e. $d_j - \psi(d_j) < \beta$, which together with $\delta \le d_j$ contradicts the choice of δ . Therefore $d_i < \delta$ for $i = 0, 1, \ldots$ and, consequently, $\sup_n d(y, g^n y) < + \infty$.

Theorem 2. Let $\alpha: R_+^s \to R_+$, lef f be a self-map on E that commutes with g, such that $\overline{f(E)} = f(E)$ and $g(E) \subset f(E)$, and let $\psi(t) = \alpha(t, t, t, 2, t, 2, t)$. Assume that conditions $1)_1 - 2 - 3 - 4 = 0$ are fulfilled. Then f and g have a unique common fixed point.

Proof. Let x be a point in E that satisfies condition iii) and put y = f(x). We define a sequence of points $(y_n)_{n \in \mathbb{N}}$ as follows. Let $y_0 = y$, $m_0 = n(y_0)$ and $y_n = g^{m_n - 1}y_{n-1}$, $m_n = n(y_n)$ for each $n \in \mathbb{N}$, $1 \le n$. Evidently, $(y_n)_{n \in \mathbb{N}}$ is a subsequence of $(g^n y)_{n \in \mathbb{N}}$. We show that $(y_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. It suffices to show that for a given $\varepsilon > 0$, $d(y_{n+1}, y_{n+k+1}) < \varepsilon$ for all $k \in \mathbb{N}$, when n is large enough. For this purpose, let $n \in \mathbb{N}$ be fixed, $d_i = d(y_n, g^i y_n)$ and $m(k) = m_{n+1} + m_{n+2} + \cdots + m_{n+k}$. Then

$$d(g^{m_n}y_n, g^{m(k)}y_n) \leq d(g^{m_n}y_n, y_n) + d(y_n, g^{m(k)}y_n) = d_{m_n} + d_{m(k)}$$

$$d(g^{m_n}(g^{m(k)}y_n), g^{m(k)}y_n) \leq d(g^{m_n}(g^{m(k)}y_n), y_n) + d(y_n, g^{m(k)}y_n) = d_{m_n+m(k)} + d_{m(k)}.$$

Hence, if t_1 denotes a number chosen among m(k), m_n , $m(k) + m_n$ such that $d_{t_1} = \max(d_{m(k)}, d_{m_n}, d_{m(k)+m_n})$, we have

$$d(y_{n+1}, y_{n+k+1}) = d(g^{m_n} y_n, g^{m_n+k} y_{n+k}) = d(g^{m_n} y_n, g^{m_n} (g^{m(k)} y_n)) \leq$$

$$\leq \alpha (d(y_n, g^{m_n} y_n), d(y_n, g^{m_n+m(k)} y_n), d(y_n, g^{m(k)} y_n), d(g^{m_n} y_n, g^{m(k)} y_n),$$

$$d(g^{m_n+m(k)} y_n, g^{m(k)} y_n)) \leq \alpha (d_{t_1}, d_{t_1}, d_{t_1}, 2 d_{t_1}, 2 d_{t_1}) = \psi(d_{t_1}).$$

Repeating this procedure, we can find positive integers $t_j, j = 1, \ldots, n$ such that $d(y_{n-j+1}, g^{ij}y_{n-j+1}) \leq \psi(d(y_{n-j}, g^{ij+1}y_{n-j}))$.

Hence, since ψ is nondecreasing, we obtain

$$d(y_{n+1}, y_{n+k+1}) \le \psi^{n+1}(d(y, g^{t_{n+1}}y)) \le \psi^{n+1}(\sup_{n} d(y, g^{n}y))$$

with $\sup_{n} d(y, g^{n}y) < +\infty \cdot (y_{n})_{n \in \mathbb{N}}$ is a Cauchy sequence as it derives from 3).

Now, since (E, d) is a complete metric space, the Cauchy sequence defined above converges to a point, say $u \in E$. By an argument similar to that used above, one can easily show that $\lim_{n \to \infty} d(g^{n(u)}y_n, y_n) = 0$. Now, let $\varepsilon = d(g^{n(u)}u, u) > 0$; there exists an $n_0 \in N$ such that

$$d(u, y_n) < (\varepsilon - \psi(\varepsilon))/4,$$
 $d(g^{n(u)}y_n, y_n) < (\varepsilon - \psi(\varepsilon))/4$

for all $n \in \mathbb{N}$, $n_0 \le n$. Keeping in mind that $u \in \overline{f(E)} = f(E)$, it follows that

$$\varepsilon = d(g^{n(u)}u, u) \leq d(g^{n(u)}u, g^{n(u)}y_n) + d(g^{n(u)}y_n, y_n) + d(y_n, u) \leq$$

$$\leq \alpha (d(u, g^{n(u)}u), d(u, g^{n(u)}y_n), d(u, y_n), d(g^{n(u)}u, y_n), d(g^{n(u)}y_n, y_n)) +$$

$$+ (\varepsilon - \psi(\varepsilon))/2 \leq \alpha (\varepsilon, \varepsilon, \varepsilon, 2\varepsilon, 2\varepsilon) + (\varepsilon - \psi(\varepsilon))/2 = \psi(\varepsilon) + (\varepsilon - \psi(\varepsilon))/2 < \varepsilon$$

which is a contradiction. Consequently, $g^{n(u)}(u) = u$.

Suppose that there is a $v \in E$ such that $g^{n(u)}(v) = v$. Since

$$d(u, v) = d(g^{n(u)}u, g^{n(u)}v) \leqslant \alpha (d(u, g^{n(u)}u), d(u, g^{n(u)}v), d(u, v), d(g^{n(u)}u, v),$$

$$d(v, g^{n(u)}v)) \leqslant \psi (d(u, v))$$

one has d(u, v) = 0, i.e. u = v. Then, since $g(u) = g^{n(u)}(g(u))$, u is a fixed point of g. Finally, f(u) = f(g(u)) = g(f(u)); hence f(u) = u, i.e. u is a fixed point of f. This completes the proof.

Remark 1. If in Theorem 2 we take $f = I_E$ (the identity map on E), we get Theorem 2 of [2].

Remark 2. If in Theorem 2 we take $f = I_E$, n(x) = 1 for all $x \in E$, we get Theorem 1 of Husain-Sehgal ([4]).

2. Next we shall consider the proof of the following theorem.

Theorem 3. Let $\psi: R_+ \to R_+$ be non decreasing, continuous on the right, $\psi(t) < t$ for each t > 0 and let f be a continuous self-map on E that commutes with g and such that $g(E) \subset f(E)$. Assume that conditions a) — b) are fulfilled. Then f and g have a unique common fixed point.

Proof. Let
$$u$$
 and v be such that $f(u) = g(u) = u$ and $f(v) = g(v) = v$. Since $d(u, v) = d(g(u), g(v)) = d(g^{n(f'u)})(f(u)), g^{n(f(u))}(f(v))) \le 0$

$$\le \psi(d(f(u), f(v))) = \psi(d(u, v))$$

we have d(u, v) = 0, i.e., u = v, so that uniqueness is obtained.

Now, let x be a point in E that satisfies b); by an argument similar to that used for Theorem 2, one can easily show that the sequence $(g^n(f(x))_{n\in\mathbb{N}})$ contains a Cauchy subsequence $(y_n)_{n\in\mathbb{N}}$. Let $u\in E$ be such that $u=\lim_n y_n$. By the continuity of f we have $f(u)=\lim_n f(y_n)$. Since for every $n\in\mathbb{N}$

$$d(y_n, f(y_n)) = d(g^{m_{n-1}} y_{n-1}, g^{m_{n-1}} (f(y_{n-1}))) \le$$

$$\le \psi (d(y_{n-1}, f(y_{n-1}))) \le \cdots \le \psi^n (d(y, f(y)))$$

by the continuity of ψ , we have $\lim_{n} d(y_n, f(y)) = 0$. It follows that d(u, f(u)) = 0, i.e., u = f(u). Hence u is a fixed point of f. Now we note that

$$d(g^{n(u)}u, g^{n(u)}y_n) \leq \psi(d(u, y_n)) \leq d(u, y_n)$$

so that $\lim_{n} g^{n(u)} y_n = g^{n(u)}(u)$. Hence $d(g^{n(u)} u, u) = \lim_{n} d(g^{n(u)} y_n, y_n)$. Since

$$d(g^{n(u)}y_n, y_n) \leqslant \psi(d(g^{n(u)}y_{n-1}, y_{n-1})) \leqslant \cdots \leqslant \psi^n(d(y, g^{n(u)}y)) \leqslant \leqslant \psi^n(\sup_n d(y, g^n y))^{(1)}$$

we have $\lim_{n} d(g^{n(u)}y_n, y_n) = 0$, so that $d(g^{n(u)}u, u) = 0$, i.e., $g^{n(u)}u = u$. Then by condition a), u is the unique fixed point of $g^{n(u)}$ and, hence, it is also the unique fixed point of g, since

$$g^{n(u)}(g(u)) = g(g^{n(u)}u) = g(u).$$

This completes the proof.

Remark 3. If in Theorem 3 we take $f = i_E$, we get the Corollary of [2].

Remark 4. If in Theorem 3 f is a nonexpansive self-map on E that commutes with g, and if we replace a) and b) by the conditions

- a)₁ for every $x \in E$ there exists a positive integer n = n(x) such that $d(g^n(x), g^n(y)) \leq \psi(d(f(x), f(y)))$ for all $y \in E$,
 - b)₁ there exists an $x \in E$ and a $\delta > 0$ such that $\beta < \delta \psi(\delta)$, where

$$\beta = \max_{i \leq n(x)} d(x, g^i(x)),$$

then the conclusion of Theorem 3 holds again.

3. Next we consider the proof of the following theorem.

⁽¹⁾ By an argument similar to that used for Lemma 2, one can easily show that condition b) implies $\sup d(y, g^n y) < +\infty$ with y = f(x), where $x \in E$ is the x considered in b).

Theorem 4. Let $\psi: R_+ \to R_+$ be upper semicontinuous from the right and let it satisfy $\psi(t) < t$ for all t > 0. Let f be a self-map on E such that f^m , where m is any fixed positive integer, is continuous and let $g: f^{m-1}(E) \to E$ commute with f. Assume that conditions e) — ed) are fulfilled. Then f and g have a unique common fixed point.

Proof. Starting with an arbitrary point x_0 in $f^{m-1}(E)$ and appealing to condition c), we construct a sequence $(x_n)_{n\in\mathbb{N}}$ of points in $f^{m-1}(E)$ such that $f(x_{n+1}) = g(x_n)$.

Let $y_n = f(x_{n+1}) = g(x_n)$ for every $n \in \mathbb{N}$. Note that $f(y_n) = f(g(x_n)) = g(f(x_n)) = g(y_{n-1})$. Let $z_n = f(y_n)$ for every $n \in \mathbb{N}$. By an argument similar to that used in [1] by Boyd-Wong (cf. Theorem 1), one can easily show that the sequence $(z_n)_{n \in \mathbb{N}}$ is a Cauchy sequence of points in E. Let $z \in E$ be such that $z = \lim z_n$. By the continuity of f^m , $(f^m(z_n))_{n \in \mathbb{N}}$ converges to $f^m(z)$. Moreover,

 $g(f^{m-1}(z_n)) = g(f^{m-1}(f^2(x_{n+1}))) = f^m(g(f(x_{n+1}))) = f^m(f(g(x_{n+1}))) = f^m(z_{n+1})$ implies that $(g(f^{m-1}(z_n)))_{n \in \mathbb{N}}$ converges to $f^m(z)$. Furthermore,

$$d(f^{m}(z_{n+1}), g(f^{m-1}(z))) = d(g(f^{m-1}(z_{n})), g(f^{m-1}(z))) \leqslant \psi(d(f^{m}(z_{n}), f^{m}(z))) \leqslant$$
$$\leqslant d(f^{m}(z_{n}), f^{m}(z))$$

so that $g(f^{m-1}(z)) = \lim_{z \to \infty} f^m(z_{n+1}) = f(z)$. Finally,

$$d(g(g(f^{m-1}(z))), g(f^{m-1}(z))) \leq \psi d(f(g(f^{m-1}(z))), f^{m}(z))) = \psi (d(g(g(f^{m-1}(z))), g(f^{m-1}(z))))$$

yields $g(g(f^{m-1}(z))) = g(f^{m-1}(z))$; $g(f^{m-1}(z))$ can be easily seen to be a fixed point of f too. Hence f and g have a common fixed point. The uniqueness follows once again from conditition b).

Remark 5. If in Theorem 4 we take $f = i_E$, we get Theorem 1 of Boyd-Wong.

Remark 6. If in Theorem 4 we take $\psi(t) = k \cdot t$ (where 0 < k < t) and m = 1 we get Jungck's fixed point theorem. We also remark that in Theorem 4 f is not necessarily continuous, whereas in Jungck's theorem it is.

Remark 7. Contractive inequalities, usually supposed in common fixed point theorems for two self-maps f and g on a complete metric space (E, d) (still with the conditions $f \circ g = g \circ f$ and $g(E) \subset f(E)$), are of the following form

(*)
$$d(g(x), g(y)) \leq \cdots$$
 (cf. Theorem 4)

whereas the inequalities supposed in Theorems 2 and 3 are of the following form

(**)
$$d(g(f(x)), g(f(y))) \leq \cdots$$

Then it is worth noting the link between the two types of theorems. Common fixed point theorems, with the inequality (**), are direct consequences of theorems with the inequality (*). Generally the converse is not true. But if f is one-to-one, the two types of theorems are equivalent.

REFERENCES

- [1] D.W. Boyd, J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
- [2] V. Conserva, Un teorema di punto fisso per transformazioni su uno spazio uniforme di Hausdorff con una iterata contrattiva in ogni punto, Le Matematiche, 34 (1979), 210—218.
- [3] K.M. Das, K. Viswanatha Naik, Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (1979), 369—373.
- [4] S.A. Husain, V.M. Sehgal, A fixed point theorem with a functional inequality, Publ. Inst. Math. (Beograd) 21 (35) (1977), 89-91.
- [5] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261-263.
- [6] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 62 (1977), 344—348.

Istituto di Matematica, Via Arnesano, 73100 Lecce (Italia) (Received 10 08 1980)