ON A RANDOM FUNCTION DEFINED ON A PSEUDO BOOLEAN ALGEBRA

Jelena Bulatović

Denote by $A = (A, \cup, \cap, \rightarrow, -)$ any pseudo Boolean algebra [2], by A = A and A = A and A = A the minimal and maximal element in A = A, respectively, and by A = A the ordering relation in A = A. Suppose that the function A = A, has the following properties (see [1]):

- (I) $p(a) \ge 0$ for any $a \in A$,
- (II) $p(\lor) = 1$,
- (III) if $a_1, a_2, \dots \in A$ are such that $a_i \cap a_j = \bigwedge$ for $i \neq j$, and

$$\bigcup_{i=1}^{\infty} a_i \text{ exists, then } p\left(\bigcup_{i=1}^{\infty} a_i\right) = \sum_{i=1}^{\infty} p\left(a_i\right),$$

(IV) if $a \leq b$, a, $b \in A$, then $p(a) \leq p(b)$;

such a function p will be called probability on \mathcal{A} . It is obvious that, if \mathcal{A} it a Boolean algebra, then this is the classical definition of probability.

In this paper we shall define one mapping with values in A and show that, if A is a Boolean algebra, then that mapping is isomorphic to the inverse function of some random variable defined in the classical way. Later we shall define different types of convergence of a sequence of so defined mappings and, also, investigate relationsh ps between these types of convergence.

In order to do what we just promised we need some preliminaries. Denote by R the real line, by $\mathcal{B}(R)$ the Boolean σ -algebra of Borel sets from R, and by i the ordinary non-trivial interior operation on R; then $\mathcal{T}(R) = (\mathcal{B}(R), \cup, \cap, C, i)$ is the topological Boolean algebra [2].

Any operation H from the set i(R) of all open sets from R into A will be called a homomorhism from i(R) into A if the following conditions are satisfied:

- (i) $H(\varnothing) = \wedge$, $H(R) = \vee$,
- (ii) if A, $B \in i(R)$ are such that $A \cap B = \emptyset$, then $H(A) \cap H(B) = A$,
- (iii) if A_1 , A_2 , $\cdots \in i(R)$ are such that $A_i \cap A_j = \emptyset$ for $i \neq j$, and

$$\bigcup_{i=1}^{\infty} H(A_i) \text{ exists, then } H(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} H(A_i).$$

If $_{\text{c}}\mathcal{A}$ is a pseudo Boolean $_{\text{c}}$ -algebra, then a homomorphism H becomes a $_{\text{c}}$ -homomorphism.

When i is the ordinary non-trivial interior operation on $\mathcal{B}(R)$, and H is any homomorphism from i(R) into \mathcal{A} , then the mapping $X = H \cdot i : B \in \mathcal{B}(R) \rightarrow X(B) = H(i(B)) \in A$ will be called the random function on \mathcal{A} .

In the next theorem we shall prove that, in the case A is a Boolean σ -algebra, the random function X is isomorphic to the inverse function of one random variable, defined in the classical way.

Theorem. Let (Ω, \mathcal{F}) be a Boolean σ -algebra and h a σ -homomorphism from \mathcal{F} onto a Boolean σ -algebra \mathcal{A} . If X is a random function on \mathcal{A} , then there exists a real-valued \mathcal{F} -measurable function Y on Ω (i.e. a random variable in the classical sense), such that

(1)
$$X(B) = h(Y^{-1}(B))$$

for any $B \in \mathcal{B}(R)$.

Proof. Let r_1, r_2, \ldots be a sequence of all rational numbers; put $B_n = (-\infty; r_n)$ and $A_n = X(B_n) = H(i(B_n)), n = 1, 2, \ldots$. First, we shall construct a sequence E_1, E_2, \ldots of elements from \mathcal{F} , corresponding to the sequence r_1, r_2, \ldots and having the following two properties:

(a)
$$h(E_i) = A_i$$
 for $i = 1, 2, ...,$

(b) if
$$r_i < r_i$$
, $i, j = 1, 2, \ldots$, then $E_i \subset E_j$.

The assumption that h is a homomorphism onto A implies the existence of at least one E_1 from ${}_{\circ}\mathcal{T}$, such that

$$h\left(E_{1}\right) =A_{1}.$$

For the same reason, there exists $E \in \mathcal{F}$, such that $h(E) = A_2$; it is clear that such an E is not necessarily unique. If we want to find $E_2 \in \mathcal{F}$ satisfying also (b) for $i = 1, 2, \ldots$, then we have to compare r_1 and r_2 , and for each of two possible cases to define E_2 .

If $r_2 < r_1$, then $A_2 \leqslant A_1$ (for H is a homomorphism), which implies that from $A_2 \neq \wedge$ it follows that $E_1 \cap E \neq \varnothing$. Let us show that the equality

$$(2) h(E_1 \cap E) = A_2$$

is satisfied. Using (ii) we have

$$A_1 \cap h(E \setminus E_1) = \wedge \text{ and } A_2 = h(E) = h(E \setminus E_1) \cup h(E \cap E_1),$$

which, together with the previous equality, implies

$$h(E \setminus E_1) = \wedge$$
,

and thus (2) is proved. This permits us to define the set E_2 in the case $r_2 < r_1$, by $E_2 = E_1 \cap E$.

But, if $r_2 > r_1$, then $A_2 \geqslant A_1$ and, again using (ii), we have $h(E_1 \cup E) = A_2 \cup h(E_1 \setminus E)$, which, together with $h(E_1 \setminus E) \leqslant h(E_1) = A_1 \leqslant A_2$, implies

 $h(E_1 \setminus E) = \Lambda$; that means that the element $E_1 \cup E$ also satisfies the equality $h(E_1 \cup E) = A_2$, which permits us, in the case $r_2 > r_1$, to define the set E_2 by $E_2 = E_1 \cup E$.

Suppose that we already have constructed, for some finite n, the elements E_1, E_2, \ldots, E_n from \mathcal{F} , satisfying the conditions (a) and (b). Let $E \in \mathcal{F}$ be any element such that the equality $h(E) = A_{n+1}$ holds; then the element E_{n+1} will be defined by

$$E_{n+1} = \begin{cases} (\bigcap_{i=1}^{n} E_i) \cap E, & \text{if } r_{n+1} < r_i \text{ for all } i = 1, 2, \dots, n, \\ E_m \cup (E \cap E_M), & \text{if } r_m < r_{n+1} < r_M, \\ (\bigcup_{i=1}^{n} E_i) \cup E, & \text{if } r_{n+1} > r_i \text{ for all } i = 1, 2, \dots, n, \end{cases}$$

where

$$r_m = \max\{r_i: r_i < r_{n+1}, i = 1, 2, \dots, n\}, \quad r_M = \min\{r_i: r_i > r_{n+1}, i = 1, \dots, n\}.$$

It is easy to see that in this way we constructed a sequence E_1, E_2, \ldots having the properties (a) and (b).

Let us put $F = \bigcup_{i=1}^{\infty} E_i$, and define the function Y on Ω by

$$Y(\omega) = \begin{cases} 0, & \text{if } \omega \in \Omega \setminus F, \\ \inf \{r_n : \omega \in E_n\}, & \text{if } \omega \in F; \end{cases}$$

this definition is correct, since complete ordering of the set $\{E_i\}$ implies that, for any $\omega \in \Omega$, there exists a positive integer j, such that $\omega \notin E_j$ and $\omega \in E_{j+1}$.

In order to show that the function Y is \mathcal{F} -measurable, it is sufficient to show that for any t the set $Y^{-1}((-\infty; t))$ belongs to \mathcal{F} , which immediately follows from the equality

(3)
$$Y^{-1}((-\infty; t)) = \begin{cases} \bigcup_{\substack{r_i < t \\ r_i < t}} E_i, \ t \leq 0, \\ \bigcup_{\substack{r_i < t \\ r_i < t}} E_i \cup (\Omega \setminus F), \ t > 0. \end{cases}$$

Now, we have only to prove that (1) holds. It is easy to see (since h and H are homomorphisms) that $h(\bigcup_{n=1}^{\infty} E_n) = \bigvee$, which implies the equality $h(\Omega \setminus F) =$

 $= \wedge$; the last equality, together with (2), gives

$$h(Y^{-1}((-\infty; t))) = \bigcup_{r_i < t} A_i = X((-\infty; t))$$

for any real t. From that equality and from the fact that $\mathcal{B}(R)$ is generated by all sets of the form $(-\infty; t)$, $t \in R$, it follows that (1) is satisfied for any $B \in \mathcal{B}(R)$. This proves the theorem.

Corollary. If all conditions from the above theorem are satisfied, then the σ -field \mathcal{F} can be replaced by some other σ -field $\overline{\mathcal{F}}$ in such a way that h becomes a σ -isomorphism.

Proof. It is clear that the relation \sim , defined on \mathcal{F} by

$$G_1 \sim G_2$$
 if and only if $h(G_1) = h(G_2)$,

is an equivalence relation on \mathcal{F} . The equivalence class generated by $G \in \mathcal{F}$, will be denoted by |G|. Let us put $\overline{\mathcal{F}} = \mathcal{F}/\sim$, and suppose that all operations on $\overline{\mathcal{F}}$ are defined obviously: $|G_1| \cup |G_2| = |G_1 \cup G_2|$, $|G_1| \cap |G_2| = |G_1 \cap G_2|$, $|\overline{G}| = |\overline{G}|$. It is easy to see that $\overline{\mathcal{F}}$ is a σ -field and that h is a σ -isomorphism from $\overline{\mathcal{F}}$ onto \mathcal{A} . The proof is completed.

It is clear that, when h is an isomorphism, the sets E_1 , E_2 , ..., are uniquely determined, and hence the function Y is also uniquely defined, that is there exists just one random variable (in the classical sense) such that the mappings Y^{-1} and X are isomorphic.

REFERENCES

- [1] J. Bulatović, On probability function on pseudo-Boolean algebra, Publ. Inst. Math. 24(38)(1978) 29—38.
 - [2] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, Warszawa 1963.

Matematički Institut Knez Mihailova 35 11000 Beograd (Received 21 03 1981)