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ON THE FREQUENCY WITH WHICH BOUNDED
FUNCTIONS HAVE SPECTRAL GAPS

Richard Bieberich

Some special results were proved in [3] and [9] whose theme seems to
be that it is more common for a bounded function on the real line to have
spectrum all of R than to have a spectral gap. There are several ways to quan-
tify such a statement.

Let X be a set of objects or natural equivalence classes of objects poten-
tially capable of exhibiting some phenomenon (such as having spectrum all
of R), and let A X be the subset of objects which actually exhibit it. A coun-
ting argument might show that the cardinality of 4 is strictly greater than the
cardinality of X—A. Alternatively, a natural topology or measure might be defi-
ned on X with respect to which either A4 is topologically large, or X—A4 is
topologically small or of measure zero. Such arguments incidentally establish
that the phenomenon does occur.

In this paper the fragments of [3] and [9] are put into a proper frame-
work: two simple proofs, one topological and the other a cardinality argument,
will be given that most bounded measurable functions have no spectral gaps.
The main ingredient in the notion of a spectral gap is analytic continuation of
holomorphic functions in half-planes. In many ways it is profitable to view
such functions as analogues of power series, so that the arguments given here
are naturally motivated by the classical results that most power series do not
continue beyond their circles of convergence (see, for example, [2], pp. 91—104).
The necessary definitions and facts concerning the specirum of a bounded func-
tion are collected below. These are followed by the results on the frequency
with which bounded functions have spectral gaps, and the paper closes with
some general remarks.

Let f be in L? (R) for 1<<p<<oo. The two functions
0 -]
Fr(f.2)=[f@e™dt and F(f, 2)=—[f(D)e ' dt
e K

are holomorphic in the upper and lower half-planes, respectively. This pair of
functions is called the Fourier-Carleman transform of f. They are clearly linear
in the first argument. The complement of the open set on the real line across
which F+ and F- continue analytically to each other is called the spectrum of
f, and is denoted by &(f). An open interval in the complement of o ( f)is
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called a speciral gap of f. One motivaticn for the interest in 6 (f) is that,
when f is both bounded and integrable, o (f) and the support of the ordinary
Fourier transform of f are the same [8, pp. 179-180].

(1) Lemma. If fis bounded and if there is a positive number B such that

=]

f}f(t)]e’“dt

0

is finite, then F~(f, z) is holomorphic on Im z<<B.

Proof If z=x+iy, where y<f, then

&) F- (£, )= F-(f.x+ip)= = [ f(1) emit+i it =
0

= — ff(t)e‘a’e""("“[y—m)’dt:F‘(xL, x-+i[y—B8D,
0

where § (£)=f(t)e®. { is integrable on all of R, so F~(y, x+i[y—B] is holo-
morphic when y—8=1Im(x+i[y—p])<0, or when Im z<@. Equation (2) then
says that F~(f, z) is also holomorphic when Im z<B.

The closure of the trigonometric polynomials

N .
>a,etnx, A real,
n=1

with respect to different notions of distance yields different classes of almost
periodic functions [1, p. 70 ff.]. The Bohr almost periodic functions are ob-
tained by the uniform closure; thus they are plainly bounded. It is proved in [5]
that the spectrum of a Bohr almost periodic function is the closure of its set
of Fourier exponents (the word “spectrum” is not used there). Thus any
closed subset F of the real line can be the spectrum of a bounded function:

-]
a,e** is a Bohr
-1

n=

-]
if {A,|nEN} is dense in F ¢nd if > la,| converges, then
n=1
almost periodic function whose spectrum is F. Hence the spectrum of a bound-
ed function can be discrete; in particular, this occurs for a periodic function.

Both quantitative statements, Theorems (8) and (10), describing the fre-
quency with which a bounded function has a spectral gap, follow easily from
the following uniqueness property of the Fourier-Carieman transform.

3) Theorem. Let f be a bounded function on the real line. If there
is a positive number B such that

4) [ ir@)esar

0
is finite and if f has a spectral gap, then f is zero almost everywhere.
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This result was stated, but not proved, in [I1, p. 151].

Proof. Since (4) is finite, (1) says that F~ (f, z) is holomorphic on
Im z<f. But F~ (f,z) continues across f’s speciral gap to F* ( f, z), so, by
the Identity Theorem for holomorphic functions [7, p. 199],

(%) F=(f,2)=F* (f,2)

on the strip 0<Im z<f.

Let 0<y<p, and let x be any real number. With z=x+iy, equation
(5), in the form F* —F~ =0, yields

(6) [r@e "™ dr—o.
R

Let §(t)=f(t)e™. ¢ is integrable on the real line, and equation (6) says that
@EO. Thus the uniqueness property of the Fourier transform [8, p 125] yields
that =0 a. e¢., which says that f=0 a. e. The proof is done.

In [2, p. 94], two power series with radius of convergence one are iden-
tified if their difference has radius of convergence larger than one. Thus the
point of view that the Fourier-Carleman functions are analogues of power
series, together with (1), suggests that two bounded functions f and g be
identificd if there is a positive number § for which

(7 [1f)—g @) e dt
0

is finite. This is an equivalence relation on L= (R); each class is uncountable, and
the class containing f will be denoted C (f). (Alternatively, let ¥ be the vector
space of bounded functions f for which (4) is finite for some positive 8, and
consider elements of L® (R)/V.) If f and g are in the same class, then (1) says
that F~ (f—g, z) is holomorphic on a half-plane that is larger than Im z<0.

Let f and g be in the same class, and suppose that f has the interval 1
as a spectral gap. Since F~ (g, 2)=F~ (f, 2)+ F (g~f, z), F~ (g, z) also conti-
nues across I. However, it is not necessarily tiue that g has I as a spectral
gap: it will be shown below in (8) that, if o (f) is discrete (for example, when
[ is periodic), then every other function in C (f) has for specirum the whole
real line. In order for g to have I as a spectral gap, F~ (g, z) must not only
continue across [, bat it must continue to something of a specific form.
Thus the phenomenon of having a spectral gap must occur less frequently than
that of analytic continuation. Theorems (8) and (10) comment on this frequency.

8 Theorem. Each C(f) contains at most countably many functions whose
spectrum is not the whole real line, and at most one whose spectrum is discrete.
If o (f) is discrete, then o(g)=R for every other g in C(f).

Proof. If any one of the three conclusions is assumed to be false, then
it follows that there are two distinct functions g and 4 in C(f) having a
common spectral gap I. The linearity of the Fourier-Carleman functions in
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their first argument implies that I is spectral gap for g—# also. Since g and £
are in C(f), there is a positive number 8 for which

f[g(t)—h(t)]eﬁ’ dt
0

is finite. The uniqueness property (3) then says that g—h=0 a. e., or that g=1#
a. e., a contradiction that ends the proof.

Two examples will now be given to show that both extremes allowed
by the phrase ‘. ..at most countably marny...” can be realized. The first is
an example of a function f for which C(f) actually contains infinitely many
members with (necessarily non-overlapping) spectral gaps; the second is an
example in which every member of C(f) has spectrum the whole real line.

Example 1. Let qa(t)=e—‘2 and let S be an even C*-function which
takes the value one on [— 1/8, 1/8] and vanishes outside [ — 1/4, 1/4]. For each
integer n, let s,(1)=s(t—n) and §,(#)=2"'"" {(t—n). The series

PEAGING)

nczZ

is an even C* — function each of whose derivatives is integrable. Thus [4, p. 13]
the Fourier transform of this serics goes to zero fast enmough that it is itself
integrable. Then the Inversion Theorem implies that the series is a Fourier
transform, say f. Since f is integrable and even, f= f. so that f is plainly
bounded.

For each n in Z, let g,=f—{,. Since ¢,=2"1""k{, where |k =1, it is
clear that each g, is bounded and integrable. ¢ and ¢ are basically the same,
so that

- oo

[11@)—g, ()| e*dt=[ 1, (1) ] ePdt< oo

0 ]

for some positive number 8. Thus g,&C(f) for each integer n. g, =f— $, is
zero only on [n—1/8, n+1/8] and at scme isolaied points, so that (n—1/8,
n+1/8) is the only spectral gap that g, has. This finishes the first example.

Example 2. Let f be a Bohr almost pericdic function with o (f)=R.
Bochner and Bohnenblust showed in [5] that, for each Fourier exponent A of f,

©) |F~ (f, \—iy)| > as y~O0.

If g is in C(f), then (1) says that F~(f--g, z) is holomorphic on a half-plane
that is larger than Im z< 0. This fact, together with (9) and the triangle ine-
quality, yields that

{F~(g, A\—iy)| —>o00 as y\O0

for each Fourier exponent of f. But these are dense, so ¢ (g)=R also.
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Now, for each bounded function f and positive number B, let N(f,B) be
the collection of all bounded functions g for which

o«

[1f@®—g@)| e ar

0

is finite. The topology that will be used on L*(R) is the one in which the
sets N (f, B) are the neighborhoods.

Although they will not be used in this paper, a few brief comments about
this topology are in order. Redefine a neighborhood as follows: let N*(f, B)
be the collection of all bounded functions g for which there exists a positive
number ¢ such that

[1f()—g ()] e+ordr
[1]

is finite. Let

a(f, g)zinf{——} f{f(t)—g(t)]e‘*’dt< oo};

|

then g is in N*(f, B) if and only if d(f, g)<<1/B. d is not a metric: d(f, g)
can be zero without f and g being equal a. e. Neither is it a pseudo-metric
since it can take the value -+ co. But

(/8
1+d(f, 8)
is a pseudo-metric whose topology is equivalent to the one whose neighbor-
hoods are the sets N* (f, B). Since N* (f, BTN (f, BYCTN*(f, B/2), the topology

on L* (R) that will be used is of equal strength with one generated by a
pseudo-metric.

D(f, &)=

(10) Theorem. Relative to the topology on L*(R) determined by the
neighborhoods N (f, B), the set of functions having a spectral gap is a countable
union of discrete sets.

Proof. Let I be an open interval on the real line with rational end-
-points, and let F, be the set (actually a subspace) of all bounded functions
which have I as a spectral gap. The collection of bounded functions which have
a speciral gap somewhere is the countable union U, F;. To see that each F; is
discrete, let f and g be distinct elements of F; and suppose that g is in N (f, B).
f—g has I as a spectral gap, so that, by the uniqueness property (3), f=g a.
e., a contradiction which ends the proof.

What is the mathematical use of such statements as Theorems (8) and
(10)? If the spectrum of a certain bounded function is to be computed, if it
is to be determined where a given power series continues across its circle of
convergence, or if the transcendence of a specific constant is to be proved,.
such statements are of no use at all. They do, however, put in place a certain
attitude, or expectation, despite a well-founded caution in their interpretation
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[6, p. 33; note the cautious *“...a strictement parler...”]. They can also make
a qualitative statement about the nature of a problem. For example, since now,
on the strength of (8) and (10), it can be said that most bounded functions
have for their spectrum the whole real line, it is to be expected that the pro-
blem of reconstructing f from o (f)—the problem of spectral synthesis [10, p. 184]
—would be difficult to sort out, as indeed i. has proven to be.
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