A LOEB MEASURE APPROACH TO THE RIESZ REPRESENTATION THEOREM

Rade Živaljević

Abstract. A short non-standard analysis proof of the Riesz representation theorem is given.

The concept of the Loeb-measure proved to be very useful in constructions of various kinds of limit measures. The papers of Anderson [1], Loeb [5] and Lindstrøm [3], to mention just a few, are typical examples where this technique was successfully applied.

The cornerstone of the metod is the following theorem.

Theorem 1. (Loeb [4]) Let (X, \mathcal{A}, μ) be an internal finitely additive measure space and ${}^{\circ}\mu(X) < +\infty$, where ${}^{\circ}\mu(A) := \operatorname{st}(\mu(A))$. Then ${}^{\circ}\mu$ has a unique extension $L(\mu)$ to the completion $L(\mathcal{A})$ of the σ -algebra generated by \mathcal{A} . More precisely, for all $A \in L(\mathcal{A})$, $L(\mu)(A) = \sup\{{}^{\circ}\mu(B) \mid B \in \mathcal{A}, B \subset A\} = \inf\{{}^{\circ}\mu(C) \mid C \in \mathcal{A}, C \supset A\}$.

We shall also need the following result of T. Lindstrøm, more precisely, a simple special case when X is compact. Recall that Radon measure ν on a topological space X is a complete measure defined on a σ -algebra extending the Borel algebra on X, such that for all sets $B \in \mathcal{B}$

$$v(B) = \sup \{v(K) \mid K \subset B, K \text{ compact}\} = \inf \{v(O) \mid B \subset O, O \text{ open}\}.$$

Theorem 2. (T. Lindstrøm [2]) Let $(*X, \mathcal{A}, \mu)$ be an internal finite additive measure space, where ${}^{\circ}\mu(*X) < +\infty$. Assume that there is a subbasis τ for the topology on X closed under finite unions, such that for all $0 \in \tau$, $*O \in L(\mathcal{A})$. Then $\operatorname{st}^{-1}(K) \in L(\mathcal{A})$ for every compact K and $L(\mu)(\operatorname{st}^{-1}(K)) = \inf\{L(\mu)(*O) \mid |K \subset O, O \in \tau\}$. If for each $\varepsilon > 0$ there is a compact $K \subset X$ such that $L(\mu)(\operatorname{st}^{-1}K) > L(\mu)(*X) - \varepsilon$, then ν defined by $\nu(A) = L(\mu) \operatorname{st}^{-1}A$ is a Radon measure.

The orem 3. The Riesz Representation Theorem: Let X be a compact Hausdorff space and $L:C(X)\to R$ a positive linear function. Then there exists a Radon measure ν on X such that $L(f)=\int_X f d\nu$.

Proof. Let (\mathcal{P}, \leqslant) be the following partial order associated with space X.

$$a \in \mathcal{P}$$
 is equivalent with $a = (1/2, 5/2)$

where $\mathcal U$ it a finite open cover of X and $\mathcal F$ finite partition of unity subordinated to $\mathcal U$. Further on we assume that $\mathcal U$ and $\mathcal F$ are in 1-1 correspondence $\phi:\mathcal U\to\mathcal F$ such that supp $\phi(V)\subset V$ for every $V\in\mathcal U$. The order \leqslant is defined as follows. If $a=(\mathcal U,\mathcal F)$, $b=(\mathcal V,\mathcal G)$ then

(1)
$$a \leqslant b \leftrightarrow \text{(i)} \text{ and (ii) where}$$

(i) $\forall U \in \mathcal{U} \exists S \subset \mathcal{U} \ (U = \text{union } S)$
(ii) $\forall O \subset X \text{ open set } \Sigma \{ f \in \mathcal{F} \mid \text{supp } (f) \subset O \} \leqslant$
 $\leqslant \Sigma \{ g \in \mathcal{G} \mid \text{supp}(g) \subset O \}, \text{ supp}(f) := \text{cl } \{ x \mid f(x) > 0 \}.$

Let $\pi: \mathcal{U} \to X$ be a choice function associated with $a = (\mathcal{U}, \mathcal{F}) \in \mathcal{P}$ which has the property $\forall V \in \mathcal{U}$ $\pi V \in \operatorname{supp} \varphi(V)$. We need the following

C 1 a i m. (\mathcal{P}, \leq) is a directed partially ordered set.

Indeed, if $a = (\mathcal{U}, \mathcal{F})$, $b = (\mathcal{V}, \mathcal{G})$ are in \mathcal{P} then $c = (\mathcal{W}, \mathcal{H})$ defined by $\mathcal{W} = \{U \cap V | U \in \mathcal{U}, U \in \mathcal{V}\}$, $\mathcal{H} = \{f \cdot g | f \in \mathcal{F}, g \in \mathcal{G}\}$ is a common refinement of a and b.

By saturation there exists $\bar{a} = (\overline{\mathcal{U}}, \overline{\mathcal{F}}) \in {}^*\mathcal{P}/\mathcal{P}$ which refines all elements of \mathcal{P} . $\overline{\mathcal{U}}$ is a hyperfinite set and let \mathcal{A} be the hyperfinite algebra generated by $\overline{\mathcal{U}}$. Let us note that ${}^*O \in \mathcal{A}$ for every open $O \subset X$, as a consequence of (ii) in (1). Indeed, $O \in \mathcal{U}$ for same $a = (\mathcal{U}, \mathcal{F})$.

Let $\overline{\pi}: \overline{\mathcal{U}} \to *X$ be the choice function associated with $\overline{a} = (\overline{\mathcal{U}}, \overline{\mathcal{J}})$. For $A \in \mathcal{A}$ let

$$\mu\left(A\right)\colon={}^{*}\Sigma\{{}^{*}L(f)\,\big|\,\exists\,V{\in}\overline{\mathcal{U}}\;(\overline{\pi}V{\in}A\;\&\;({}^{*}\mathrm{supp})\;(f){\subset}V)\}.$$

(*X, A, μ) is an internal measure space, hence by Theorems 1. and 2. $v = L(\mu) \operatorname{st}^{-1}$ is a Radon measure. Let us prove that ν is the desired measure.

Let $O \subset X$ be open and $f \in C(X)$, such that $0 \le f \le 1$ and $supp(f) \subset O$. Then

(2)
$$L(f) \leqslant v(O).$$

To prove this, let us note that $(\{O, X\}, \{f, 1-f\}) \in \mathscr{P}$ and, if $O \neq X$, supp $(1-f) \not\subset O$ which by (ii) in (1) implies $*f \leqslant *\Sigma \{h \in \overline{\mathscr{F}} \mid (*\sup h) \subset *O\}$ $L(f) = *L(*f) \leqslant *\Sigma \{*L(h) \mid h \in \overline{\mathscr{F}}, *\sup h) \subset *O\} \leqslant \mu(*O)$ by the definition of μ .

The same inequality holds if O is replaced by an open set G such that $supp(f) \subset G \subset cl\ G \subset O$ Hence,

$$L(f) \leqslant \operatorname{st} \mu (*G) \leqslant \operatorname{st} \mu (*\operatorname{cl} G) \leqslant L(\mu) \operatorname{st}^{-1} \operatorname{cl} G \leqslant L(\mu) \operatorname{st}^{-1} O = \nu(O).$$

Now, let $f \in C(X)$ be any function. Clearly, $L(1_X) = v(X)$. Thus, we can assume, without loss of generality, that $f(X) \subset [s, t]$ for $s \ge 0$. Let $s = x_0 < x_1 < < \cdots < x_n = t$ be a subdivision of [s, t] such that $|x_{i+1} - x_i| < \varepsilon$, $0 \le i \le n - 1$, and $v(f^{-1}(x_i)) = 0$ which is possible by the σ -additivity of the measure v. Choose $O_i \supset F_i$ such that $v(O_i \setminus F_i) < \varepsilon/2^i x_i$ where $F_i = f^{-1}[x_{i-1}, x_i]$ $1 \le i \le n$. Let $0 \le f_i \le 1$ be chosen so that $f_i(F_i) = \{1\}$ and supp $(f_i) \subset O_i$.

Clearly,
$$f \leqslant \sum_{i=1}^{n} x_i f_i$$
. Thus $L(f) \leqslant \sum_{i=1}^{n} x_i L(f_i) \leqslant$
$$\leqslant \sum_{i=1}^{n} x_i v(O_i) \leqslant \sum_{i=1}^{n} x_i v(F_i) + \varepsilon.$$

Knowing that $F_i \cap F_j$ has ν -measure zero for $i \neq j$, one recognizes on the right side, a sum which is arbitrary good approximation of $\int\limits_X f d\nu$. Hence $L(f) \leqslant \int\limits_X f d\nu$ for every $f \in C(X)$. Applying the last inequality to the function -f we get the desired equality $L(f) = \int\limits_X f d\nu$.

Note added in proof. The author has been informed that profesor Peter Loeb obtained a short non-standard analysis proof of the Riesz representation theorem based on different ideas.

REFERENCES

- [1] R.M. Anderson, A Non-standard Representation of Brownian Motion and Ito Integration, Isreal J. Math. 25 (1976) 15-46
- [2] T.L. Lindstrøm, Applications of Nonstandard Analysis to Probability Theory, notes from the lectures given at the University of Wisconsin, Madison, 1981.
- [3] T.L. Lindstrøm, A Loeb-measure Approach to Theorems by Prohorov, Sazonov and Gross, preprint.
- [4] P.A. Loeb, Conversion from Non-standard to Standard Measure Spaces and Applications in Probability Theory, Trans. Amer. Math. Soc., 211 (1975), 113—122.
- [5] P.A. Loeb, Weak Limits of Measures and the Standard Part Map, Proc. Amer. Math. Soc., 77 (1979), 128-135.
- [6] K.D. Stroyan, W.A.J. Luxemburg, Introduction to the Theory of Infinitesimals, Academic Press, 1976.

Matematički Institut Knez Mihailova 35 11000 Beograd Jugoslavija (Received 23 12 1981)