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A LOEB MEASURE APPROACH TO THE RIESZ REPRESENTATION
THEOREM

Rade Zivaljevi¢

Abstract. A short non-standard analysis procf of the Riesz representation theorem
is given. i

The concept of the Loeb-measure proved to be very useful in construc-
tions of various kinds of limit measures. The papers of Anderson [1], Loeb [5]
and Lindstrem [3], to mention just a few, are typical examples where this
technique was successfully applied.

The cornerstone of the metod is the following theorem.

Theorem 1. (Loeb [4]) Let (X, .4, n) be an internal finitely additive
measure space and °u (X)< + o, where °u.(A): =st(n(A)). Then °u has a unique
extension L (u) to the completion L(.4) of the c-algebra generated by /. More
precisely, for all ACL(A), L(u)(4)=sup{®w(B)|B& A, B A}=inf {"n(C)]
| CEA CD A}

We shall also need the folowing result of T. Lindstrem, more precisely,
a simple special case when X is compact. Recall that Radon measure v on a
topological space X is a complete measure defined on a c-algebra extending
the Borel algebra on X, such that for all sets B& J3

v(B)=sup {v(K) | KCB, K compact} =inf {v(0)| BC O, O open}.

Theorem 2. (T. Lindstrem [2]) Let (*X, /4, u) be an internal finite
additive measure space, where °u(*X)< + 0. Assume that there is a subbasis
T for the topology on X closed under finite unions, such that for all O &<, *O & L (A4).
Then st™' (K)& L(A4) for every compact K and L (y)(st™* (K))=inf{L (u)(*O)]
|KC O0,0€E ). If for each ¢>0 there is a compact K C X such that
L)t ™' K)>L(w) (*X)—=<, then v defined by v(A)=L(u)st™'4 is a Radon
measure.

Theorem 3. The Riesz Representation Theorem: Let X be a compact
Hausdorff" space and L:C(X)—R a positive linear function. Then there exists a

‘Radon measure v on X such that L(f)=ffdv.
x
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Proof Let(®, <) be the following partial order associated with space X.
a&p is equivalent with a=(/, .5 )

where %/ it a finite open cover of X and ¥ finite partition of unity subordi-
nated to //. Further on we assume that // and ¥ are in 1-1 correspondence
@:U>.F such that supp o(V)CV for every V=})/. The order < is defined
as follows. If a=(l/, F), b=(4, §) then
) a<<b«> (i) and (ii) where
@) YUS)/3ISCY (U=union S)
(i) VOCX open set Z{fc .7 [supp (f)CO}<
<Z{g€F[supp(g) CO}, supp(f): =cl {x|f(x)>0}.
Let =://—~X be a choice function associated with a=(}/, ¥ )&/? which
has the property YV &}/ =V & suppo(V). We need the following
Claim. (72, <) is a directed partially ordered set.
Indeed, if a=(/, .7 ), b=(2, @) are in P then c¢=(%), Fb6) defined by

W={UNV|\Uc]/,UcD}, F6={fg|fE.F , gE4} is a common refinement
of a and b.

By saturation there exists 4 =(27, F)E*P|p which refines all elements
of /2. / is a hyperfinite set and let .4 be the hyperfinite algebra generated
by 7/. Let us note that *OE 4 for every open OC X, as a consequence of (ii)
in (1). Indeed, O&}/ for same a=(}/, F).

Let =:)/—~*X be the choice function associated with d=(J/, ¥ ). For
AE A let »

wld): =*Z(* L(f)|IVE] (V' E A & (*supp) (/) CP)}-
(*X, o4, w) is an internal measure space, hence by Theorems 1. and 2.
v=L (p)st™! is a Radon measure. Let us prove that v is the desired measure.

Let OC X be open and f&C(X), such that 0<f<<1 and supp(f)CO.
Then
) L(f)<v (0).

To prove this, let us note that ({0, X}, {f, 1 —fD&EP and, if O+#X,
supp (1 —f)Z O which by (i) in (1) implies *f<* Z{he:?:l(*supp) (h)C*0}
L(f)=*L(*)<*I{*L ()| h& T, *supp (H) C*0} <u(*0) by the definition of .

The same inequality holds if O is replaced by an open set G such that
supp(f)CGCcl GC O Hence,

L(f)<stp (*G)<stu (el )L () st~ el G L (W) st=1 O =v (0).

Now, let f=C(X) be any function. Clearly, L(1y)=v(X). Thus, we can
assume, without loss of generality, that f(X)[s, ¢] for s220. Let s=x,<Xx,;<
< ---<x,=t be a subdivision of [s, ¢] such that |x,,, — x| <e, 0<i<n—-1,
and v(f! (x ) =0 which is possible by the s-additivity of the measure v. Choose
O, D F; such that v(0O,\ F)<g/2x; where F;=f"1[x,_, x;] 1<i<n. Let 0<f;<1
be chosen so that f; (F})={1} and supp (f)CO,.
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Clearly, f< 3%/ Thus L(f)< S %L(f)<

i=1 i=1

< 2 xv(0)< S xv(F)+e.
i=1 i1

]
Knowing that F;NF; has v-measure zero for i+#j, one recognizes on the

right side, a sum which is arbitrary good approximation of f fdv. Hence
X

L)< f Sfdv for every f&C(X). Applying the last inequality to the function —f
X

we get the desired equality L(f)= f fdv.
X

Note added in proof. The author has been informed that profesor Peter Loeb obtained

a short non-standard analysis proof of the Riesz representation theorem based on different
ideas.
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