ALMOST CONTACT STRUCTURES INDUCED BY A CONFORMAL TRANSFORMATION

A. Sharfuddin, S. I. Husain

It has been shown that a conformal transformation on an odd-dimensional Riemannian manifold induces an Almost Contact Structure. This and other allied structures are studied in the present paper.

1. Introduction. Let M be a (2m+1)-dimensional almost contact metric manifold with structure tensors (φ, ξ, η, g) . Then the structure tensors satisfy

$$\varphi^2 X = -X + \eta(X) \xi, \ \eta(\xi) = 1, \ \eta(\varphi X) = 0, \ \varphi(\xi) = 0$$

$$g(\varphi X, \ \varphi Y) = g(X, \ Y) - \eta(X) \eta(Y), \ \eta(X) = g(X, \ \xi),$$

for any vector fields X and Y on M. Further, if

(1.1)

(1.2)
$$2F(X, Y) = (D_X \eta)(Y) - (D_Y \eta)(x)$$

where $F(X, Y) = g \varphi(X, Y)$ and D is the Riemannian connexion of g, then M is called a contact metric manifold.

Let ∇ be a semi-symmetric metric connnexion in an almost contact metric manifold, that is, the torsion tensor T of ∇ is given by ([1], [3]) $T(X, Y) = -\eta(Y)X - \eta(X)Y$, and further $(\nabla_X g)(Y, Z) = 0$. The Riemannian connexion D and the semi-symmetric metric connexion ∇ are related by [1]

$$(1.3) \nabla_X Y = D_X Y + \eta(Y) X - g(X, Y) \xi.$$

Let K and R denote the curvature tensors of D and ∇ respectively. Then it is seen that [2]

(1.4)
$$R(X, Y, Z) = K(X, Y, Z) - \alpha(Y, Z)X + \alpha(X, Z)Y - g(Y, Z)\beta X + g(X, Z)\beta Y$$
,

where α is a tensor field of type (0, 2) defined by

(1.5)
$$\alpha(X, Y) = (\nabla_X \eta) (Y) - g(X, Y)/2$$

and β is a tensor field of type (1, 1) defined by $g(\beta X, Y) = \alpha(X, Y)$. In [2] we proved Theorem (A). The conformal curvature tensor of the semi-symmetric metric connexion on an almost contact metric manifold coincides with that of a Riemannian connexion.

The above result leads us to say that an almost contact metric manifold with semi-symmetric metric connexion is conformally Riemannian, in the sense, that the semi-symmetric metric connexion gives rise to a connexion which is Riemannian with respect to a conformal metric. In the present paper, we have discussed the converse, viz., any odd-dimensional Riemannian manifold can be endowed with an almost contact metric structure induced by a conformal transformation. We have also defined here and studied a $(\hat{\varphi}, \hat{\xi}, \hat{\eta}, \hat{g})$ -structure on the conformally transformed manifold.

2. Conformal connexion $\widehat{\nabla}$. It is obvious that being non-symmetric the semi-symmetric metric connexion ∇ cannot be the Riemannian connexion of any metric conformal to g_{ij} . Nevertheless, Theorem (A) leads us to conscruct a symmetric connexion $\widehat{\nabla}$ from ∇ which would be Riemannian with respect to a conformal metric. Such a connexion $\widehat{\nabla}$ has been found to be $\widehat{\nabla}_X Y = \nabla_X Y + \eta(X) Y$ or, equivalently

and it can be easily verified that $\widehat{\nabla}$ is the Riemannian connexion with respect to the conformal metric $\widehat{g}_{ij} = e^{2\eta_k x^k} g_{ij}$, where η is taken to be locally represented as $\eta = \eta_k dx^k$. In fact, we have

$$(\widehat{\nabla}_X \widehat{g})(Y, Z) = X \cdot \widehat{g}(Y, Z) - \widehat{g}(\widehat{\nabla}_X Y, Z) - \widehat{g}(Y, \widehat{\nabla}_X Z),$$

which gives

$$(\widehat{\nabla}_X \widehat{g})(Y, Z) = X \cdot \{e^{2\eta_k x^k} g(Y, Z)\} - e^{2\eta_k x^k} \{g(\nabla_X Y + \eta(X) Y, Z) + g(Y, \nabla_X Z + \eta(X) Z)\} = 0.$$

Hence, in view of these observations, a study of this conformal connexion $\widehat{\nabla}$ in almost contact metric manifolds appears worthwhile.

We begin with the following:

Theorem 2.1. Let M be an almost contact metric manifold with the connexion $\widehat{\nabla}$. Then

(2.2) (a)
$$(\widehat{\nabla}_X g)(Y, Z) = -2 \eta(X) g(Y, Z)$$
, (b) $(\widehat{\nabla}_{\varphi X} g)(Y, Z) = 0$.

The proof can easily be obtained.

Remark. Equation (2.3) (a) shows a recurrence property of g with respect to the connexion $\widehat{\nabla}$. In fact, $\widehat{\nabla}$ becomes a Weyl-Hlavaty connexion [4] on (M, g).

We know that an almost contact metric manifold is a contact metric manifold if $F = d\eta$. But our η is so chosen that $d\eta = 0$. Hence, we have

Theorem 2.2. An almost contact metric manifold with the connexion $\stackrel{\frown}{\nabla}$ can not be a contact metric manifold.

Proof. Using the fact that the contact form η is closed, we get F=0 equivalent to $\varphi=0$ which proves the statement.

Let the curvature tensor corresponding to $\widehat{\nabla}$ be

$$\widehat{R}(X, Y, Z) = \widehat{\nabla}_X \widehat{\nabla}_Y Z - \widehat{\nabla}_Y \widehat{\nabla}_X Z - \widehat{\nabla}_{[X, Y]} Z.$$

Then in almost contact metric manifold, we have

$$\widehat{R}(X, Y, Z) = \widehat{\nabla}_X (D_Y Z + \eta(Y) Z + \eta(Z) Y - g(Y, Z) \xi)$$

$$- \widehat{\nabla}_Y (D_X Z + \eta(X) Z + \eta(Z) X - g(X, Z) \xi)$$

$$- D_{[X, Y]} Z - \eta(Z) [X, Y] - \eta([X, Y]) Z + g([X, Y], Z) \xi,$$

from which, after some simplication, we get

(2.5) $\widehat{R}(X, Y, Z) = K(X, Y, Z) - \alpha(Y, Z)X + \alpha(X, Z)Y - g(Y, Z)\beta X + g(X, Z)\beta Y$, where

(2.6)
$$\alpha(Y, Z) = (\widehat{\nabla}_Y \eta)(Z) - g(Y, Z)/2 + \eta(Y)\eta(Z) = (\nabla_Y \eta)(Z) - g(Y, Z)/2$$

and $g(\beta X, Y) = \alpha(X, Y)$, where $\beta Y = \stackrel{\frown}{\nabla}_Y \xi - Y/2 - \eta(Y)\xi = \stackrel{\frown}{\nabla}_Y \xi - Y/2$. Thus, we observe that the curvature tensors of $\stackrel{\frown}{\nabla}$ and $\stackrel{\frown}{\nabla}$ coincide, i.e., $\stackrel{\frown}{R}(X, Y, Z) = R(X, Y, Z)$.

In consequence of η being a closed form, $\widehat{R}(X, Y, Z)$ is seen to satisfy the following properties (cf [2], Theorem (2.2)).

(a)
$$\hat{R}(X, Y, Z) + \hat{R}(Y, Z, X) + \hat{R}(Z, X, Y) = 0$$
,

(b)
$$(\widehat{\nabla}_X \widehat{R})(Y, Z, U) + (\widehat{\nabla}_Y \widehat{R})(Z, X, U) + (\widehat{\nabla}_Z \widehat{R})(X, Y, U) = 0$$
,

(c)
$$\widehat{\nabla}(X, Y, Z, U) + \widehat{R}(X, Y, U, Z) = 0$$
,

(d)
$$\hat{R}(X, Y, Z, U) - \hat{R}(Z, U, X, Y) = 0$$
.

We also have (cf. [2], Theorem (4.2)).

Theorem 2.3. If an almost contact metric manifold with the connexion $\widehat{\triangledown}$ is of constant sectional curvature, then it is conformally flat.

3. Induced almost contact structures. In this section we consider the converse problem of Theorem (A), viz., "Given any odd-dimensional Riemannian manifold, can we endow it with an almost contact metric structure induced by a conformal transformation?"

Let M be a (2m+1)-dimensional Riemannian manifold with metric tensor g and connexion D. Consider ρ to be a function of the local coordinates $\{x^k\}$ on M and effect a conformal transformation which gives a new metric tensor

$$(3.1) \qquad \qquad \stackrel{\frown}{g} = e^{2\rho} g.$$

Let us define a 1-form $d\rho$ and a vector field grad ρ (with respect to g):

(3.2)
$$\eta = d \rho$$
, i.e., in local coordinates $\eta_k = \partial \rho / \partial x^k$

(3.3)
$$\xi = \operatorname{grad} \rho$$
, i.e., in local coordinates $\xi^i = g^{ij} \partial \rho / \partial x^j$

Further, let us define an anti-symmetric (1,1)-tensor field φ on M locally satisfying the following condition:

(3.4)
$$\varphi_j^i \varphi_k^j + \delta_k^i = \frac{\partial \rho}{\partial x^k} \frac{\partial \rho}{\partial x^m} g^{im}.$$

Then we can easily prove

Theorem 3.1. In a (2m+1)-dimensional Riemannian manifold M, the conformal transformation $g = e^{2\rho} g$ induces an almost contact structure on M defined by (φ, ξ, η, g) as given by the equations (3.2), (3.3) and (3.4).

This study thus establishes how an almost contact metric manifold with semi-symmetric metric connexion is conformally Riemannian and, conversely, how a conformal transformation on an odd-dimensional Riemannian manifold induces an almost contact structure. Let us put

(3.5.)
$$F_{ki} = g_{im} \varphi_k^m, \text{ or equivalently, } F(X, Y) = g(\varphi X, Y),$$

(3.6)
$$F_{ii} = -F_{ii}$$
, or equivalently, $F(X, S) = -F(Y, X)$,

and

(3.7)
$$F_{ij} \varphi_m^i \varphi_m^j = F_{km}, \text{ or, } F(\varphi X, \varphi Y) = F(X, Y),$$

and

$$\varphi_{j}^{i} \varphi_{k}^{j} \varphi_{1}^{k} + \varphi_{1}^{i} = 0$$
, or, $\varphi^{3} + \varphi + 0$

The following result is a direct consequence of the fact that the 1-form η is closed.

Theorem 3.2. The almost contact metric manifold as defined in Theorem 3.1 can not be a contact metric manifold.

4. $(\widehat{\varphi}, \widehat{\xi}, \widehat{\eta}, \widehat{g})$ -structure. Let $(\widehat{\varphi}, \widehat{\xi}, \widehat{\eta}, \widehat{g})$ be an almost contact metric structure on a (2m+1)-dimensional manifold M induced by the conformal transformation $\widehat{g} = e^{2\rho} g$, where $\rho = \eta_k x^k$ (defined previously). It is obvious that $(\varphi, \xi, \eta, \widehat{g})$ does not define an almost contact metric structure on M. However starting with φ , ξ and η , we can construct $\widehat{\varphi}$, $\widehat{\xi}$ and $\widehat{\eta}$ such that $(\widehat{\varphi}, \widehat{\xi}, \widehat{\eta}, \widehat{g})$ does give an almost contact metric structure to the corresponding transformed manifold \widehat{M} (say). This we do as follows: we set $\widehat{\eta} = e^{\rho} \eta$, $\widehat{\xi} = e^{-\rho} \xi$, $\widehat{\varphi} = \varphi$. Then we have the following:

Theorem 4.1. The collection $(\widehat{\varphi}, \widehat{\xi}, \widehat{\eta}, \widehat{g})$ gives an almost contact metric structure to the transformed manifold \widehat{M} .

Let us put $\widehat{F}(X, Y) = \widehat{g}(\widehat{\varphi}X, Y) = g(\varphi X, Y)$. Then $\widehat{F}(X, Y) + \widehat{F}(Y, X) = 0$, and $\widehat{F}(\widehat{\varphi}X, \widehat{\varphi}Y) = \widehat{F}(X, Y)$.

Theorem 4.2. An almost contact metric manifold \widehat{M} can not be a contact metric manifold.

The proof is direct.

REFERENCES

[1] A. Sharfuddin, S.I. Husain, Semi-symmetric metric connexions in almost contact manifolds Tensor (N.S.), 30 (1976), 133—139.

[2] A. Sharfuddin, S.I. Husain, Curvature tensors of semi-symmetric metric connexion in almost contact manifold, Tensor (N.S), 31 (1977) 227—233.

[3] K. Yano, On semi-symmetric metric connexions, Rev. Rouman Math. Pure Appl. 15 (1970), 1579—1589.

[4] K. Yano, Sur la connexion de Weyl-Hlavaty et des applications a la geometric conforme, Proc. Phys-Math. Soc. Japan, 22 (1940), 595—621.

Department of Mathematics Aligarh Muslim University Aligarh — 202001, India. (Received 21 05 1980)