PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série tome 32 (46) 1982, pp. 149—153

ON A WEAK COMMUTATIVITY CONDITION OF MAPPINGS
IN FIXED POINT CONSIDERATIONS

Salvatore Sessa

Abstract. A common fixed point theorem for a selfmapping of a complete metric space
is proved: this theorem unifies and generalizes results of J. Danes [4] and K. M. Das, K. V.
Naik [5].

1. Introduction. Let (X, d) be a complete metric space and I:X->X be
the identity mapping of X. In [6], G. Jungck shows this interesting result:

Theorem 1. Let f be a continuous selfmapping of (X,d). If there
exists a mapping g:X—X and a constant 0<a<<1 such that

) feN=g(f(x) for every xE X,
(B) g(X)Cf(X),
(C) d(gx, gy)<ad(fx, fy) for every x, yE X,

then [ and g have a unique common fixed point.

Note that if f=1I, we obtain the well known Banach contraction principle.
In recent years, several authors have generalized Theorem 1: for instance,
Cheh-Chih Yeh [2], K. M. Das and K. V. Naik [5], M. S. Khan ([7] [8]) and
Shih-Sen Chang [9]. In the present work, by retaining condition (B) and by
replacing condition (C) with one due to J. Danes [4], we generalize Theorem 1
for the selmappings f and g of X satisfying a weaker hypothesis than commu-
tativity (4), that is such that

(4) d(fex, gfx)<d(fx,gx) for every xE€ X.
Of course, our main theorem unifies and generalizes the results of [4] and [5].

2. Preliminaries. Let R* be the set of nonnegative real numbers and f, g
be selfmappings of X such that (B) holds. Let now x, be an arbitrary point
of X and x, € X such that g(x,)=/(x,). Then, by induction, we can define a

sequence {y,}» =0 as follows
8 (%) =f(*ps1) =, n=0,1,2,...
By setting:
0> W ={Vis Vk+15-- - Yirn} k=0,1,2,...

O(YO’ oo)={yo, Yise o iVps oo }
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we denote with 3(0(y,, 7)) and 8(0(y,, o)) the respective diameters. Further-
more, we put for every x, y& X:

1)  M(x, y)=max{d(fx, fy), d(fx, gx), d(f¥, g»), d(fx, g¥), d(fy> gx)}

and let p: R*—R* be a nondecreasing function, continuous from the right,
such that ¢ (¢)<<t for any ¢>0.
In [4], J. Danes, by supposing that f=1 in (l), proves the following:

Theorem 2. Let g:X—X and ¢:R*—>R* as above be such that for
every x, yeX:
) d(gx, gy) <9 (M (%, y))-

If there exists a x,& X such that 3(0(x,, ©)< 0, then g has a unique fixed
point.

In [5], the authors. by generalizing the results of [3] and [6], give the
following:

Theorem 3 Let f be a continuous selfmapping of X and g:X—X ve-
rifying conditions (A) and (B). If there exists a constant 0<a<1 such that for
every X, yEX:

(<) d(gx, gr)<aM(x, )
then { and g have a unique common fixed point.

3. Main result. We first present some lemmas by modifying in some details
the lemmas of [4] and [5].

Lemma 1. If t,&R* and t,=¢(ty-,) for k=1, then lim £, =0
Proof Obvious.

Lemma 2. Let f be a continuous selfmapping of (X, d) and g any self-
mapping of X fulfilling conditions (B) and (C,). Fok k>0 and nz=1, let us su-
ppose that 8 (0 (v, n))>0 and §(0(y,, 0))<< 0. Then, for k=1, we have:

3 (0 (Vi )< (3 (0(yo, 0)))-
Proof For i, jsuch that k<<i<j<k+n, we have from (C)):

d(y, y)=d(gx,;, gx) <o (M (x;, x))<e @Oy, j—i+ 1))
where

M(x," xj) = max{d(fxi’ij)’ d(fxi’ gxi)’ d(ij’ ng)a d(fxi’ ng)’ d(ij7 gxi)} =
Ay V=) AGi=1 ¥, AGj— 1 3, ABieys ¥, A (=15 ¥}
Then
) 3O M<eBO—y,j—i+ 1)

We claim i=k, otherwise if i>k, we have from (2) with i— 1>k and
j<k-+n

30 (7 <@ O i1, J— 1+ 1N<e G O G MN<IO > M);
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a contradiction. By routine calculation, (2) implies

3O M<P@O Wiy, J—k+1)N<O B (0 ey, n+ 1)) <P (3 (0 (3, 1+ K)))

and therefore the lemma follows because (0 (y,, o))< oo and ¢ is a nonde-
creasing function.

Theorem 4. Let f be a continuous selfmapping of (X, d) and g any
selfmapping of X satisfying conditions (A4,) (B) (C)).

If there exists a x,&X such that 3(0(y,, ©0)< o, then f and g have a
unique common fixed point.

Proof. We distinguish two cases:

i) if there exist k=0 and n>=1 such that §(0(y;, n))=0, we get immediately
Ye=DYi+p» that is S ) =80 )
ii) if 3 (0 (3, 1)) >0 for every k=0 and n>=1, then by Lemma 1, given >0,

there is a n,>>1 such that ¢™(3(0(y,, ©)))<<e. Then, by Lemma 2, for m>
>n=ny, we have d(V,, 1) <8 (0 (Vn, m—np))<e.

This means that {y,}.—0 is a Cauchy sequence and by completeness, there

is a point z in X such that z=lim y,. Since f is continuous, {f¥,}»Z¢ conve-
rges to fz.

Furthermore, (4,) implies:

d(gy, f2) <A@V Vs ) +AdVys1, [2)=d(8f%,, 1 18X, ) +
A (Vi1 JD<KAX 115 8% D H A (Vi1 J2) =d e Vo) +d (Vs 1, [2)-

Then, as n— oo, the above inequality guarantees that also {gy,}.=o con-
verges to fz. So

M(_,V,,, z)=Max{d(fy,,, fZ), d(fym gyn)) d(fZ, gZ), d(fy,,, gZ), d(fZ, gyu)}

converges to d(fz, gz). By (C,) we obtain d(gy,, g2)<¢(M(y, z)) which,
since ¢ is continuous from the right, implies d(fz, gz) = lim d(gy,, gz) <
<lim sup o (M (y,, 2))<o(d(fz, g2)), as n—>co and therefore d(fz, gz)=0 since
(1)<t for every t>0.

In both cases, we have proved the existence of a point z& X such that

3) f(2)=g(2),
Then by (3) it follows that
4 fez=gfz=ggz

Since (C,) holds, (3) and (4) imply

d(ggz, g2) <o (M (gz, 2)) = ¢ (d(ggz, g2)).

Since ¢ (1)<t for every £>0, it must be that d(ggz, gz)=0, that is gz
is a fixed point of g. From (4), we deduce that gz is also a fixed point of f.
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Let now w, z be two common distinct fixed points of f and g. Then
d(w, z)=d(gw, g2) <o (M (w, 2)) = (d(w, 2))<d(w, 2);
a contradiction. This completes the proof.

Remarks. By setting f=1 in Theorem 4, we obtain Theorem 2. Moreo-
ver, if we put ¢(t)=at for every ¢>0, Theorem 3 follows from Theorem 4
because Lemmas 2.1 and 2.2 of [5] imply that & (0(y,, ©))< «© for every x,E X.

In the following example Theorem 4 holds, whereas Theorem 3 (as well
as the results of [2], [7], [8], [9]) is not applicable.

Example 1. Let X=[0, 1] be with usual metric. Define gx=x/2+x
and fx = x/2 for every x & X. Further, let be ¢ () =t/1 + ¢ for every >>0. We have:

g(X)=[0, 1/31, f(X)=[0, 1/2], p(t)<t for t>0
and for every x&X:
x x < x? x x

X
d(fgx, gf)=——- = < =X T _asx, ex).
ex e = i ax Gin@i2n d+2x 2 24x (7%, &%)

Moreover, for every x, y& X:

Y ’: 20x—y| __ |x=y| _ (Ix—yl):
24x 24+y| Qrx)Q+y) 2+ |x—y 2

=¢ (d(fx, <o (M (%, y)).
One can easily show that all the other assumptions of Theorem 4 are
fulfilled.
Theorem 3 is not applicable because g does not commute with f being
gfx =x/(4+x)>x/(4 + 2x) = fgx for any x+#0 in X.
The example below shows that Theorem 4 is stronger than Theorem 3 for
commuting maps.

d(gx, gy)= !

Example 2. Let X=(- o, ©) be with usual metric. Define g, f:
X—X as follows:

0 if x<0
g(x)={x-—x2/2 if 0<x<1

12 if x>1
0 if x<0
f(x)={x if 0<x<1
1 if x>1 '
) = [t—t2/2 if 011
t/2 if t>1

We have: gX)=[0, 1/2], f(X)=[0, 1], ()<t for t>0 and fgx=gfx
for every x& X. Furthermore:

x<0 and y<0 imply d(gx, g¥)=0=¢(d(fx, /),
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x<0 and 0<y<1 imply d(gx, g»)=y—1*/2=0(d(f}, gX),
x¥<0 and y>1 imply d(gx, gy)=1/2=¢(dfy, gx)),
0<x<1 and 0<y<1 imply d(gx, gn)=|x—y|-(1-(x+y}/2)<
|x=y|- (1~ |x—y|/2)=0d(fX, 1)),
0<x<1 and y>1 imply d(gx, gy)=1/2—-x+x2/2<1/2 —x*[2 =
(1= -1 =x)2=0@d(fx, /),
x>1 and y>1 imply d(gx, g»)=0=0(d(fx, f)).

Summarizing, we have for every x, yEX: d (gx, gn)<o(M(x, »)), so (C))
holds. All the other hypotheses of Theorem 4 are clearly satisfied, but this
is not the case for Theorem 3. Indeed, suppose that (C,) holds. We have for
x=0 and O<y<1:

y=y}2<aMax{y, 0, y2/2, y - y*/2, y} = y,

that is 1 —y/2<{« and, as y—0, consequently 1<{«; a contradiction.
The idea of this example appears in {1].
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