A NOTE ON GRAPHS REPRESENTABLE AS PRODUCTS OF GRAPHS

Zlatomir Lukić

1. Definitions. The ordered pair G = (V(G), E(G)), where V(G) is a non-empty and finite set and where elements of E(G) are subsets of V(G) with two elements, is called a graph. The elements of V(G) are vertices, while elements of E(G) are edges of the graph G.

The complete graph and the cycle, with n vertices, are denoted with K_n and C_n . Specially, the vertices of the graph K_2 , are denoted by 1 and 2.

The union $G_1 \cup G_2$ of graphs G_1 , and G_2 , is a graph G, where $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$. If $V(G_1) \cap V(G_2) = \emptyset$, we use notation $G_1 + G_2$ instead of $G_1 \cup G_2$. The graph nG is the union $\sum_{i=1}^n G_i$, where $G_i \cong G$, $i = 1, \ldots, n$.

The join $G_1 \nabla G_2$ of graphs G_1 and G_2 , $V(G_1) \cap V(G_2) = \emptyset$, is a graph G, where $V(G) = V(G_1) \cup V(G_2)$ and $\{x, y\} \in E(G)$ if and only if $\{x, y\} \in E(G_i)$ or $x \in V(G_i)$ and $y \in V(G_j)$ $i \neq j$ i, j = 1, 2.

The product $G_1 \times G_2$ of graphs G_1 and G_2 is a graph G, where $V(G) = V(G_1) \times V(G_2)$ and $\{(x_1, y_1), (x_2, y_2)\} \in E(G)$ if and only if $\{x_1, x_2\} \in E(G_1)$ and $\{y_1, y_2\} \in E(G_2)$.

2. Preliminaries. The product of graphs seems to have been first introduced by K. Čulik, who called it the cardinal product [4]. The product $G_1 \times G_2$ is also called conjunction, Kronecker product, tensor product etc.

P. Weichsel [8] has proved Theorem 1.

Theorem 1. The product $G_1 \times G_2$ of connected graphs G_1 and G_2 is connected if and only if either G_1 or G_2 contains an odd cycle.

Lemma 1 If G is bipartite, then $K_1 \times G = 2G$.

Fig. 1.

This lemma is noted in a paper by E. Sampathkumar [6]. D. Cvetković [1] mentions graphs G_1 and G_2 , $\neg G_1 \cong G_2$, which satisfy the relation $K_2 \times G_1 \cong K_2 \times G_2$ (Fig. 1).

3. On the product $K_2 \times G$. It is possible to generalize the previous statement.

Lemma 2. For a given k, there are graphs $G, G_1, \ldots, G_k, G_i \neq G_j$ for $i \neq j$, for which $K_2 \times G_i = G$, $i = 1, \ldots, k$.

Proof. From $K_2 \times (2C_3) = K_2 \times C_6 = 2C_6$ we obtain $K_2 \times (2iC_3 + (k-i)C_6) = 2kC_6$ for i = 1, ..., k.

Let $V(G) = \{x_1, \ldots, x_n\}$, then $V(K_2 \times G) = \{(i, x_j) \mid i = 1, 2, j = 1, \ldots, n\}$. The graph $K_2 \times G$ is bipartite, the parts are $\{(1, x_i) \mid i = 1, \ldots, n\}$ and $\{2, x_i\} \mid i = 1, \ldots, n\}$. Both of them have the same number of vertices.

Lemma 3. The graph $K_2 \times G$ has at least one automorphism which matches the vertices with different first coordinates.

Proof. Let $V(G) = \{x_1, \ldots, x_n\}$. The mapping $f: V(G) \rightarrow V(G)$ defined by $f(1, x_i) = (2, x_i), f(2, x_i) = (1, x_i)$ ($i = 1, \ldots, n$) is clearly an isomorphism.

Lemma 4. If G a connected bipartite graph and if one component of the graph $K_2 \times G$ is isomorphic to $K_2 \times G$, then there is at least one isomorphism between any component of $K_2 \times G$ and $K_2 \times G_1$, which matches the vertices with equal first coordinates.

Proof. Let G be a connected bipartite graph and let one component of $K_2 \times G$ be isomorphic to $K_2 \times G_1$. The graph $G_2 \times G_1$ has an automorphism which matches the vertices from different parts. Thus, any component of $K_2 \times G \cong 2G$ has an automorphism which matches the elements from different parts.

Lemma 5 If $K_2 \times G_1 \cong K_2 \times G_2$, then there is at least one isomorphism between $K_2 \times G_1$ and $K_2 \times G_2$, which matches the vertees with equal first coordinate.

Proof. Let E_1, \ldots, E_m be components of the graph G_1 and let F_1, \ldots, F_n be components of the graph G_2 . Also, let E_1, \ldots, E_r and F_1, \ldots, F_s be bipartite graphs. Thus $E_1, E_1, E_2, E_2, \ldots, E_r, E_r, K_2 \times E_{r+1}, \ldots, K_2 \times E_m$ are the components of the graph $K_2 \times G_1$, while $F_1, F_1, F_2, F_2, \ldots, F_s, F_s, K_2 \times F_{s+1}, \ldots, K_2 \times F_n$ are the components of the graph $K_2 \times G_2$.

If $E_i \cong F_j$, for $i \leqslant r$ and $j \leqslant s$, or $K_2 \times E_i \cong K_2 \times F_j$, for i > r and j > s, obviously we obtain Lemma 5. If $K_2 \times E_i \cong F_i$, for i > r and $j \leqslant s$, or $E_i \cong K_2 \times F_j$, for $i \leqslant r$ and j > s, we obtain Lemma 5 from Lemma 4.

Theorem 2. If $K_2 \times G_1 \cong K_2 \times G_2$ and if H is a bipartite graph, then $H \times G_1 \cong H \times G_2$.

Proof. Let f be an isomorphism between $K_2 \times G_1$ and $K_2 \times G$, which matches vertices with equal first coordinate. Also, let H have parts $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$. The mapping $g: V(H \times G_1) \rightarrow V(H \times G_2)$, defined by

$$g(x_i, z) = (x_i, z_1)$$
, where $f(1, z) = (1, z_1)$,
 $g(y_i, z) = (y_i, z_2)$, where $f(2, z) = (2, z_2)$,

for $i=1,\ldots,m,\ j=1,\ldots,n$ and $z\in V(G_1)$, is clearly an isomorphism.

Theorem 3. If $K_2 \times G_1 = K_2 \times G_2$, then $K_2 \times (G_1 \nabla G) = K_2 \times (G_2 \nabla G)$ for each graph G.

Proof. Let f be an isomorphism between $K_2 \times G_1$ and $K_2 \times G_2$, which matches vertices with equal first coordinate. The mapping g defined by

$$g(x, y) = \begin{cases} f(x, y) & \text{if } y \in V(G_1) \\ (x, y) & \text{if } y \in V(G) \end{cases}$$

for $(x, y) \in V(K_2 \times (G_1 \nabla G))$, is clearly an isomorphism.

We give a characterization of the product $K_2 \times G$.

Definition 1. Let G be a bipartite graph with bipartition $\{x_1, \ldots, x_n\} \cup \{y_1, \ldots, y_n\}$. Let G^* be the graph with the following properties:

1.
$$(x_i, y_j) \in V(G^*) \Leftrightarrow \{x_i, y_j\} \in E(G)$$
, 2. for all $i_1 \neq i_2$ and $j_1 \neq j_2$ $\{(x_{i_1}, y_{j_1}), (x_{i_2}, y_{j_2})\} \in E(G^*) \Leftrightarrow (\{x_{i_1}, y_{j_2}\}) \in E(G) \land \{x_{i_2}, y_{j_1}\} \in E(G))$.

Theorem 4. If G is a bipartite graph with bipartition $\{x_1, \ldots, x_n\} \cup \{y_1, \ldots, y_n\}$, then there is a graph G_1 such that $G = K_2 \times G_1$ if and only if G^* has a subgraph isomorphic to K_n

Proof. Let $G = K_2 \times G_1$ and $V(G_1) = \{z_1, \ldots, z_n\}$. Thus, the subgraph of the graph $(K_2 \times G_1)^*$ with vertices $\{(1, z_i), (2, z_i) | i = 1, \ldots, n\}$ is isomorphic to K_n .

Let G^* has a subgraph with vertices (x_i, y_i) , i = 1, ..., n, which is isomorphic to K_n . Let $V(G_1) = \{(x_i, y_i) | i = 1, ..., n\}$ and $\{(x_i, y_i), (x_j, y_j)\} \in E(G_1)$ if and only if $\{x_i, y_i\} \in E(G)$. Thus, $G = K_2 \times G_1$ with the isomorphism f defined by

$$f(x_i) = (1, (x_i, y_i)), f(y_i) = (2, (x_i, y_i)) (i = 1, ..., n).$$

4. A Graph Equation. Before we solve a graph equation, let's prove the following lemma.

Lemma 6. If a graph $G_1 \times G_2$ has the subgraph K_n , then G_1 and G_2 have the subgraph K_n .

Proof. Let the subgraph K_n of a graph $G_1 \times G_2$ has the vertices (x_i, y_i) , $i = 1, \ldots, n$. From $\{(x_i, y_i), (x_j, y_j)\} \in E(G_1 \times G_2)$ we obtain $\{x_i, x_j\} \in E(G_1)$ and $\{y_i, y_j\} \in E(G_2)$. Thus, the graphs G_1 and G_2 have a subgraph isomorphic to K_n .

If
$$|V(G_1)| = 1$$
 and $\overline{G_1 \times G_2} = G_3 \times G_4$, then $|V(G_2)| = |V(G_3)| = V(G_4)| = 1$.

Theorem 5. If $|V(G_1)| \neq 1$ and

$$\overline{G_1 \times G_2} = G_3 \times G_4 \tag{1}$$

then $G_i \cong K_3$, i = 1, 2, 3, 4.

Proof. Let $V(G_1) = \{x_1, \ldots, x_n\}$ and $V(G_2) = \{y_1, \ldots, y_m\}$ and $n \geqslant m$. The vetrices (x_i, y_1) , for $i = 1, \ldots, n$, are nonadjacent in $G_1 \times G_2$. Thus, $\overline{G_1 \times G_2}$ has a subgraph K_n . From Lemma 5. we obtain $|V(G_3)|$, $|V(G_4)| \geqslant n$. From $|V(G_1)| \cdot |V(G_2)| = |V(G_3)| \cdot V|(G_4)|$ we obtain $G_3 \cong G_4 \cong K_n$. Analogously, $G_1 \cong G_2 \cong K_n$. The number of edges of a graph $K_n \times K_n$ is $2\binom{n}{2}^2$. From (1) we get

$$\binom{n^2}{2} - 2 \binom{n}{2}^2 = 2 \binom{n}{2}^2$$

or n=3. The graphs $K_3 \times K_3$ and $\overline{K_3 \times K_3}$ are given on Fig. 2., where an isomorphism is indicated.

K3 X K3

K3 X K3

REFERENCES

Fig. 2.

- [1] D.M. Cvetković, Cubic integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. N° 498 N° 541 (1971), 107—113.
- [2] D.M. Cvetković, Uber die Zerlegung eines Graphen in ein Produkt von Graphen, XVIII Inter. Wis. Koll. TH. Ilmenau 1973, 57-58.
- [3] M.F. Capobianco, On characterizing tensor composite graphs, Ann. New York Acad. Sci. 175 (1970), 70-84.
 - [4] K. Čulik. Zur Theorie der Graphen, Časopis Pešt. Mat. 83(1958), 135-155.
 - [5] Z. Lukić, Reprezentacija grafa u obliku proizvoda grafova, Master Thesis, Beograd, 1977.
 - [6] E. Samathkumar, On tensor product of graphs, J. Austral. Math. Soc. 20(1975), 268-273.
- [7] R. Šokarovski, A generalized direct product of graphs, Publ. Inst. Math. (Beograd) 22 (36) (1977), 267—269.

garage established

[8] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47—52.

Cara Lazara 6 14000 Valjevo Yugoslavia (Received 13 04 1081)

LA CLA THE CHANT FOR