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A NOTE ON GRAPHS REPRESENTABLE AS PRODUCTS OF GRAPHS

Zlatomir Luki¢

1. Definitions. The ordered pair G=(V(G), E(G)), where V(G) is a
non-empty and finite set and where elements of E(G) are subsets of V(G)
with two elements, is called a graph. The elements of ¥ (G) are vertices, while
elements -of E (G) are edges of the graph G.

The complete graph and the cycle, with » vertices, are denoted with
K, and C,. Specially, the vertices of the graph K,, are denoted by 1 and 2.

The union G,UG, of graphs G,, and G,, is a graph G, where V(G)=
=V(G,)UV (G, and E(G)=E(G)UE(G). If ¥ (G, )nV(G2)= J, we use nota-

tion G, +G instead of G,UG,. The graph »G is the union Z G;, where G;~<G, i=
=1

The join G,VG, of graphs G, and G,, V(G)NV(G,)= &, is a graph G,
where V(G)= V(GI)UV(Gz) and {x, y}CE(G) if and only if {x, y}€EE(G,) or
xcV(G) and y&V(G) i#j i,j=1, 2.

The product G, xG, of graphs G, and G, is a graph G, where V(G)=
=V(G)xV(G,) and {(xl yl) (x, yz)}eE(G) if” and only if {x, x,}EE(G))
and {y; y,}€EE (G 2)

2. Preliminaries. The product of graphs seems to have been first introdu-
ced by K. Culik, who called it the cardinal product [4]. The product G, x G,

is also called conjunction, Kronecker product, tensor product etc.
P. Weichsel [8] has proved Theorem 1.

Theorem 1. The product G,xG, of connected graphs G, and G, is
connected if and only if either G, or G contams an odd cycle.

Lemma 1 1If G is bipartite, then K, x G=2G.

Gz:
Gr:

Fig 1

This lemma is noted in a paper by E. Sampathkumar [6]. D. Cvetkovi¢
[1] mentions graphs G, and G,, 1 G,=~G,, which satisfy the relation K, xG =~
=~K,x G, (Fig. 1).
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3. On the product K, x G. It is possible to generalize the previous statement.

Lemma 2. For a given k, there are graphs G, Gl,..., G, G,#G; for
i#j, for which K, xG,=G, i=1,..., k

Proof. FromK, x (2C;)=K, x C;=2C, we obtain K, x (2iC; +(k —i) Cg) =
=2kC, for i=1,..., k.

Let V(G)={x,,...,x,}, then V(K,xG)={(i,x;) i=1,2. j=1,...,n}. The
graph K, x G is bipartite, the partsare {(1, x;)|i=1,...,n} and {2,x)|i=1,...,n}.
Both of them have the same number of vertices. ‘

Lemma 3. The graph K, x G has at least one automorphism which mat-
ches the vertices with different first coordinates.

Proof. Let V(G)={x,,...,x,}. The mapping f:¥V (G)—>V(G) defined by
L, x)=(2,x),f(2,x)=(1,x) (i=1,...,n) is clearly an isomorphism.

Lemma 4. If G a connected bipartite graph and if one component of
the graph K,x G is isomorphic to K,x G, then there is at least one isomor-
phism between any component of K, x G and K, x G,, which matches the vertices
with equal first coordinates.

Proof. Let G be a connected bipartite graph and let one component
of K, x G be isomorphic to K, xG,. The graph G,x G, has an automorphism
which ‘matches the vertices from different parts. Thus, any component of
K, x G==2G has an automotphism which matches the elements from diffcrent
parts.

Lemma 5 If K, xG,~K,xG,, then there is at least one isomorphism
between K, x G, and K, x G,, which matches the vertces with equal first coordinate.

Proof. Let E,...,E, be components of the graph G, and let F,,...,F,
be components of the graph G,. Also, let E,,...,E, and F,,....,F, be bipa-
rtite graphs. Thus E,E,E,.E,,...,E,E, K,xE,,,,...,K,xE, are the com-
ponents of the graph K, x G, while F,, F, F,, F,, ... ,F, F, K, xF,,,...,K,xF,
are the components of the graph K, x G,.

If E==F;, for i<r and j<s, or K, x E;~K, xF;, for i>r and j>s, obvi-
ously we obtain Lemma 5. If K, x E,~F,, for i>r and j<s, or E;>=K, xF},
for i<r and j>s, we obtain Lemma 5 from Lemma 4.

Theorem 2. If K,xG,=K,xG, and if H is a bipartite graph, then
Hx G >~HxG,.

Proof. Let f be an isomorphism between K,xG, and K, xG, which
matches vertices with equal first coordinate. Also, let H have parts {x,,...,X,}
and {y,,...,»,}. The mapping g: V(H x G )~V (H x G,), defined by

g('xis Z)=(xi’ zl)’ Where f(l, Z)=(1, z])’
g(yjs Z)=(yjs Zz)’ where f(2a Z)=(2s 22),

for i=1,...,m, j=1,...,n and z&V (G)), is clearly an isomorphism.
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Theorem 3. If K,xG, =K, xG,, thenKx(GvG) Kx(szG)for
each graph G.

Proof. Let f be an isomorphism between K, x G, and K, x G,, which
matches vertices with equal first coordinate. The mapping g defined by

fx, ) if yeVv(G)
(x,») if yeV(G)

for (x, y)eV(K,x(G,VG)), is clearly an isomorphism.

g(x, y)=[

We give a characterization of the product K, xG.

Definition 1. Let G be a bipartite graph with bipartition {x, ... ,x,}U
U{ys - --»> Y. Let G* be the graph with the following properties:

L (x, y)EV(G¥)S{x; y;; €E(G), 2. for all ij#i, and j, #j,
{(xix ’ y/’x)’ (xiz: Vi )}EE(G*)@({XH s Via }EE(G) A {xiz s Vi }EE(G))

Theorem 4. If G is a bipartite graph with bipartition {x,,...,x}
U{ys- >V} then there is a graph G, such that G=K,x G, if and only if G*
has a subgraph isomorphic to K,

Proof Let G=K,xG, and V(G)={z,,...,z,}. Thus, the subgraph
of the graph (K, x G,)* with vertices {(1, z)), (2, z))|i=1,...,n} is isomorphic
to K,

Let G* has a subgraph with vertices (x;y),, i=1,...,n, which is isomo-
rphic to K,. Let V(G)={(x;,y)!i=1,...,n} and {(x;y), (x;, Y)}EE(G,) if
and only if {x; y}€E(G). Thus, G=K, x G, with the isomorphism f defined by

f(xi)=(1’ (xi’ yi))’ f(yx)=(2, (x;" yl)) (l= 1: . ’n)

4. A Graph Equation. Before we solve a graph equaiion, let’s prove the
following lemma,

Lemma 6. If a graph G, xG, has the subgraph K,,, then G, and G,
have the subgraph K,

Proof. Let the subgraph K, of a graph G, x G, has. the vertices
(x,y), i=1,...,n. From {(x;, ), (x;, »,)}EE(G, xGZ) we obtain {xp X}
€E(G)) and {y, y,}€EE(G,). Thus, the graphs G, and G, have a  subgraph
isomorphic to K,.

If |V(G)|=1 and G, xG,=G,xG,, then lV(Gz)|—|V(G3)|—V\G4)|—]

Theorem 5. If [V(G)|#1 and
G, xG,=G,xG, 4))
then G=~K,, i=1, 2, 3, 4.
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Proof. Let V(G)={x,,...,x} and V(G)={p,...,ys} and n>m.
The vetrices (x;, y,), for i=1,...,n, are nonadjacznt in G, x G,. Thus, G, xG,
has a subgraph K. From Lemma 5. we obtain |V(G,) |, |V (G,)|>n. From |V (G))|-
AV (G)|=V(G,))|-¥V|(G)| we obtain G,22G,=~K,. Analogously, G,~=G,~K,.

2
The number of edges of a graph K, x K, is 2 ('21) . From (1) we get
n2 n 2  I/n 2
5)-2() -2 ()

or n=3. The graphs K, x K, and K, x K, are given on Fig. 2., where an
isomorphism is indicated.

1 5 8

9 2 4

5 7 3

K3 X K3 Fig.2 K3 X K3
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