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SOME REMARKS ON POINT PICARD SETS FOR ENTIRE FUNCTIONS
L. S. O. Liverpool, Umaru Umar

1. Introduction and statement of results. Following Lehto [4] we call a
plane set E a Picard set for entire functions if every entire transcendental
function f(z) has the following property: For every finite value a, with at
most one exception, f(z) takes a infinitely often in the complement CE of E.
This is the only sense in which we shall use the expression “Picard set in
what follows.

From this definition, if E is not a Picard set, there must be an entire
transcendental function f(2), such that for two distinct values a and b, f(2)
takes a and b at most finitely often in CE. Clearly we can assume without
loss of generality that ¢ and b are 0 and | respectively.

Recent results on Picard sets in this sease may be found in Toppila [6]
and [7] and also in Baker and Liverpool [1] and [2]. In Lehto [4] the following
result was proved.

A set E={a,} n=1, 2, 3, ... is a Picard set for entire function if
|an/an+1 | =0 (1/}’[2)

By restricting the points of E to lie on a ray the above condition can
be weakened to |a,.,/a,|=q>1.

In this paper, we shall prove in a direct manner that the restriction
“points of E lic on a ray“ is not necrssary. Ideed the condition |a,,,/a,|>q>1
is sufficient to ensure our point sct E={a} is a Picard set. We observe also

that the entire function f(z) = (1 +Cos l/z)/2 takes 0 and 1 at the points a,=
=n?zw?, n=0, 1, 2, ... . This shows that the condition |a,, /a,|>1+2/n is
not strong enough to give us Picard sets. However for this function, and its
zero and one points, |a,,,/a,|—1 as n— oo. We show that we can indeed obtain
Picard sets E={a,} for which |a,,, /a,|-—-1 as n— co. More precisely, we shall
prove the following theorem.

Theorem 1. If E={a}, n=1, 2, 3, ..., is a countable point set and
la,.,/a,|=2q9>1 then E={a)} is a Picard set for entire transcendental functions.
Moreover, we can obtain Picard sets E={a,} for which |a,|<l|a,.,|—> o and
| @, 1/a,|—1 as n—>oo. In particular, any set with |a,|=exp (S n/iogn), 3>k =2,
k>1 is such a set.
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After establishing this theorem, we shall briefly discuss our result in the
light of other related results in the literature.

2. Conditions for a sequence of points {a,} to be a Picard set. We quote
the following statement of Schottky’s theorem.

Lemma 1. (Hayman [3]) If f(2) is regular and satisfies f(z)#0, 1 on
lz|<1, then M(r, f)<Q(ay, r), where r=|z|<1 and Q(a,, r) satisfies

Q(a,, r)<exp(l, r)=*{(1+r)logmax (1, |a,|)+2Cr}

Here C is an absolute constant and g,=f(0). We now state and prove
our second lemma — a result which we shall need in the proof of our theorem

Lemma 2. Suppose f(2) is an entire function and {a} is a sequence of complex
numbers with |a,|<|a,,,|, and |a,|— oo with n. If all the solutions of the equ-
ations, f(z)=0 and f(z)=1 occur at the points a,, then there exists arbitrarily

large n and points z,, with |z,1=V[a,a,,,| such that |f(z,)|<2.

Proof. Let «a=0 or 1 be taken at most a finite number of times by
f(2). Then there is a path I' leading to infinity on which f(2) - a.

The points at which T' cuts the circle |z|=)|a,aq,,,]| for n large enough
satisfy the assertion of the lemma. We now assume that f(z) takes 0 and 1
infinitely often. We consider an arbitrarily large z, such that f(z;)=1. This z,
must be one of our a, There is now a curve vy through z, on which | f(z)|=1.
There are two possibilities! Either v is not closed but extends to infinity, in
which case our argument above applies or, vy is closed, enclosing a region D
inside which |f(z)|<1 in which case D contains a zero a, of f(2).

Now, we let z,=a,, a,5a, There is a path ¢ (in D appart from one
end point at zy) joining a, and z, and this path meets either }zlzl/{ Ay By |
or |z|=V]|a,a,.,, at a point where |f(z)|<1.

Since |z,|=|a, | may be chosen arbitrarily large, the lemma is proved,

We now go on to apply this lemma to prove our theorem,

Theorem 1. If |a,,,/a,|>9>1 then E={a,}, n=1, 2, 3, ... is a Pi-
card set for entire transcendental functions. Moreover we can obtain Picard sets
E={a,} in which |a,|<|a,,,|—> and |a,,  [a,|—>1 as n—>co. In particular
any countable point set with |a,|=exp (3n/logn) with 8>k =%, k> 1 is such a set.

Proof. Under our hypothesis E={a,}, with |a,|<|a,,,|—>c. We sup-
pose ncw that E is not a Picard set for entire transcendental functions. Then
there must be an entire transcendental function f(z), whose zeros and ones lie
entirely in E. We apply our lemma and hence there are arbitrarily large n,
such that the annulus 4:|a,|<|z|<|a,,,| contains no zeros or ones of f(z)

and there is a z,, with |z,|=)|a,a,,,| at which |f(z,)|<2. We suppose this
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z, lies on the real axis. We map the annulus 4 by the transformation z=e*
to a strip.

logx=log|a,|<Ret<log|a,,,|=logp

We then introduce the transformation w=c+dt with c= —dlogz, and d=
=x/(2log p/a).
This takes our first strip into a second one —mw/4<Reu<m/4.

Finally we introduce the transformation w=tanu to map this second strip
onto the unit disc |w|<1.

Thus the chain of transformations mentioned above, i.e.
z=é', u=c+dt, c=dlogz, d==/(2logp/e) w=tanu

maps the annulus 4 onto the unit disc with z, mapping to the origin w=0

and the circle |z|=|z,|=Va,a,,,| described just once maps into the segment
of the imaginary axis between =+i+t, where

== tanh [x2/(2 log B/)] = 1 — 2 {exp [x*/(log p/o)] + 1}
We now apply Lemma 1, to our annulus A to get
M(r, g)y<exp(1—-r)~1{(1+r)log2+2Cr}
For r=|w|<1, this becomes
M(r, g)<<expk!(1—r)-1, k! an absolute constant.

Here f(z) in our annulus is now regarded as a function g(w) in |w|<1 with
gwW)#0, 1 there. Also |a,|=1g(0)|=|f(z)<2. In particular for values of

f@) on |z|=p=V]a,a,.,| we have

MG, )= max | g (i) | <exp (2log 2+ 2 ¢)/(1 — 7))

Thus | f(z) |<exp {k!/2 - (exp [x%/(log B/e)] + 1)}. (A)
Using our coefficient condition in the hypothesis, |a, , ,/a,/=>¢> 1 i.e. p/a> 1 we

see that | f(z) |<k,, a bound independent of n, for z satisfying |z]=l/ la,a,.,|=p.
But this contradicts Liouville’s theorem and hence E must be a Picard set for
entiere transcendental functions, thus establishing our theorem.

Let us now take |a,|=exp(@nflogn), 8>k=? k>1. Then log|a,.,/a,|~
~3[logn which converges to zero when n— co. Thus log|a,.,/a,|>3/k logn and

n*[logla,. /a,|<(kn?logn)/d<clogn, with c=k=?/S<]1.
Using (4) and this inequality, we get for large » that
| f(2) | <exp{k!(e°'oe " + 1)/2} < Aexp (k! n°[2) <exp (S nflogn), A=expk!/2

Thus on |z|=p=VTa,a,.,], |f(z)|<|a,|<p. This again contradicts Liouville’s
theorem since f(z) is entire transcendental. Hence our proof is complete.
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3. Related Results in the Literature. Lot us look at two results in the
literature which throw some more light on our theorem.

Matsumoto [5] showed that if f(z) is an entire transc2ndental function, then
f(2) takes every finite value outside a set E infinitely often except for at most
one when the points a,, of E satisfy the condition log|a,,,/a,| =m(n) where
m(n), n=1, 2, 3, ..... are positive numbers such that

t
E(Kl/mrn > m (n)>< 0, K a const.

t—>c0 n=1

In the considerations in the proof of our throrem, we used an explicit choice
of a,, but in general, our method works provided on |z|=p=VTa,a,.,|

log [f(2) | <k'[2-(exp (=’ [log| a,.,/a,) + 1)

implies log|f(z)|<k,logp and hence f(z) has to be a polynomial contradicting
Liouville’s theorem. This is indeed the case if

exp(n?/logla,,,|a,|)+ 1<k’ log|a,| that is exp(=?/log|a,, /a, )<k,log|a,l|
Now, let us put M(n)=Ilog|a,, /a,|. We notice that

n—1
I G, ﬁzAal ;2 > m(t)+logla|
|

log|a,!l=log
ap—1 Ay~ a, —1
| n—1
Thus we see that our method works as long as exp (x’/m (n))/ > m(t) is bo-
t=1
unded for all arbitrarily large n. /
Topilla [7] has also shown that a countable point set E={a,} whose
points converge to infinity is a Picard set of entire functions if there exists

¢>0, such that
{z10<|z—a,|<loge|a, flog|a,| }NE= o

for all sufficiently large n. .

In the s me paper Matsumoto shows shat his result is best possible in the
sense that corresponding to each realvalued function /4 (r) satisfying A (r) — co
as r— o0, there exists a countable set E={a,} whose points converge to infinity
which is not a Picard set for entire function:, and which satisfies the condition

{z]0<|z—a,|<[a,|[h(]a,|log|a, )}NE= 2
for all sufficiently largs n. In our theorcm our points are so far apart, that

Matsumoto’s second condition is satisfied.

Let us finally communt that our theorem gives a direct proof that the
restriction which appears in Lehto’s paper is not neccesary. It also displays
explicitly that we can have Picard cets E= {¢ } such that |a,, fa,|—>1 as n—> o0
despite the function f(z) =(1 + cos V/z)/2 which shows that E - {a,} with a,=n?m?
is not a Picard set.
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