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SUBOPTIMALITY OF STOCHASTIC SYSTEMS:
STRUCTURAL UNCERTAINTIES AND INFORMATION CONSTRAINTS*

Radovan Krtolica

Abstract. Suboptimality characterization of linear feedback with complete and incomplete
state information is presented for linear time-varying systems corrupted by input and out-
put noise. The measure of performance degradation is proposed to quantify the loss caused
by the use of suboptimal feedback loop in the presence of structural uncertainties and non-

classical information constraints. Necessary and various sufficient conditions for suboptima-
lity are given.

1. Introduction. A desing methodology for suboptimal estimation and cont-
rol in the presence of model uncertainties and nonclassical constraints on cont-
rol and information patterns is frequently needed in feedback design of large-
-scale engineering systems composed of interconnected subsystems. Generalizing
the previous deterministic work on performance deterioration and suboptima-
lity of decentralized control of weakly coupled systems, [2, 9 — 11, 13, 14],
we have provided characterizations of suboptimality of linear feedback for sto-
chastic systems with deterministic initial state and zero terminal cost, [8]. The
purpose of the present paper is to extend this characterization to the general
LQG problem with an arbitrary structural perturbation that affects the input,
the output and the interconnections. The degree of suboptimality being defi-
ned as an upper bound of the deviation of the performance with respect to
the performance of a referent system, the measure of performace degradation
with respect to the best possible performance is introduced.

In Section 2., we define the degree of suboptimality of a control law
with complete state information, and provide the corresponding necessary and
various sufficient conditions for the control to be suboptimal.

In Section 3., we extend the notion of degree of suboptimality to the li-
near feedback with incomplete state information. Conditions that are presented
here are a natural generalization to those presented in the previous section.

Notation: with some obvious exceptions, Greek letters denote scalars,

lower case italic letters denote vectors, and capital italic letters denote mat-
rices.
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82 Radovan Krtolica

2. Degree of suboptimality: complete state information. Let us consider a
set of s interconnected subsystems described by stochastic differential equations

2.1y dx=A; x;dt+Biudt+ 3 A xidt+ S Biwdt+dvy, i=1, 2, ..., s

j=1 j=1

y

where x; (¢), u;(t), v;(t) are n;, p;, n, vectors, respectively, which are the state,
input and input-noise of the i-th subsystem such that n, +n,+ - +n,=n,
PP+ - - - +ps=p, (p<n), and 4; (1), 4;;(t), B;(t), B,;(t) are maririces of
appropriate dimensions, whose elements are continuous functions of time on
the interval (¢, #); 7,0 is the initial time, and #,>¢, is the final, terminal
time. The input noise in (2.1) is described by an » vector v(t)-—-[v,T(t), v (),

- vsT(t)], which is a Wiener process independent of the inital state xJ-
~[xT ), xg(to), cees xsT(t,,)], with E(dvdvT)=R,dt, were E denotes mathe-

matical expectation, R,(¢)=diag{R,,(t), R,,(t), ..., R, (f)} is the incremen-
tal covariance matrix, whose elements are uniformly bounded continuous
functions of time, and E(dv)=0. It is also assumed that the Guassian statistics
E(xg) = mg, cov(x,, x,)=R,, and R, (t), for the system (2.1) is given a priori.

For convenience, we introduce the notation A,=diag{4,, 4,, ..., 4},
Bp=diag{B,, B,, ..., B}, Ac=(4;), Bc=(B,), (i, j=1, 2,...5), A=Ay, + A,
B=Bj+ B, where the subscripts D and C stand for “‘decoupled” and “coup-
led” subsystems. With this notation, the system (2.1) can be represented as

2.2) dx = Apxdt + Byudt + A; xdt + Boudt +dv,

where x7(t)=[x{ (1), x5 (x), ..., xT(#)] and ut (t) ={ui @), us (0, ..., ul ()

We associate with the i-th subsystem in (2.1) a quadratic cost

Vi
2.3) Ji:x};Sfi xfi+f (xlTQxi xi+uiTQuiui) dr,

to

and consider the expected value EJ; of the cost J;, as a measure of system
performance. We denote by x,=x;(¢,) and xf; Sy X5 the terminal (final) state
and the terminal cost of i-th subsystem, respectively. The matrices Q,;(¢) are
symmetric positive semidefinite of dimension n; x»n;, the matrices Q,(¢) are
symmetric positive definite of dimension p, x p, and the matrices S, are posi-
tive semidefinite of dimension »;xn,. It is assumed that the blockdiagonal
matrices Qx=diag {Qxl > sz’ cee st}9 Qu=diag {Qul’ Quz’ tecs Qus} and Qll—l
have uniformly bounded continuous elements in time. Hence, the quadratic
cost associated to the interconnected system (2.2) is

i
(2.4) J=X7Spxp+ [ 6T Q. x+uT Qu)ds,

o
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where x,=x(t), and Sy=diag{S, (t), Sr,(ts), ..., Sg (t7)}. A way to account
for the incomplete knowledge of the interconnection matrices 4. and B is
to compare the expected cost of the system (2.2) to the expected cost of some
referent system. This is performed by assuming some referent pattern of inter-
connections with respect to which bounded but otherwise unknown perturbations
are allowed. In our case perturbed values of the elements of the interconnec-
tion matrices A., B, are defined with respect to zero (4¢=0, Bc=0). An-
other possibility is to determine the referent interconnection matrix by some
nonzero values of its elements (extreme, average, or else). The additional in-
terest in the referent pattern of interconnections 4.=0, B-=0 resides in the
fact that the control design for the referent system (2.2) provides in that case
automatically a decentralized control law which often proves to be a technological
and computational benefit.

We denote by

(2.5) up(t)=—Lp(t, t))x (@), u(t)=-L(, tr) x (1),

control laws that correspond to the referent system (2.2) in which A.=0,
B.,=0, and to an arbitrary system (2.2) with A.#0, B#0, respectively. The
elements of the pxn matrices Ly (¢, t;) and L (2, t;) are continuous functions
of time 7 on the interval (¢,, t). In analogy to matrices 4. and Bg, we in-
troduce the matrix Lo=(L;), (i, j=1, 2, ..., s), such that Lo (¢, t) +Lp (2, 1) =
=L(t, t;), the dimensions of submatrices L;;(?, t,) being p; xn;. When the
disconnected system (4,=0, B.=0) is used as reference, we choose L, (¢, 1)
to be a quasidiagonal matrix L, (¢, t,) =diag {L, (¢, t;), L, (¢, tf), ..., Ls(1, te)s}s
where the dimensions of the i-th submatrix are p,xn;, (i=1, 2,..., s); in
other words, it is assumed that the only knowledge available to the i-th referent
controller is the state x; of the i-th sybsystem.

The value of the expected cost EJ° of the referent system (2.2) with cont-
rol up (¢) and interconnection matrices A (#)=0, B, (1)=0 is generally different
from that of EJ+ which is calculated for some (nonzero) matrices A (1), Bo(t)
and the control u(¢). We say that the system is weakly coupled with respect
to the cost (2.4), [2], if EJ* is bounded from above by w~'EJ?, where y is
a positive number.

In the following definition, we assume that the control law u,(x, t) is
optimal when A.=0, B,=0 in (2.2), and that the pairs of matrix functions
(Ap, Bp), (Ap, ;/2) satisfy the conditions of uniform and differential control-
lability and observability, respectively, [6, 15, 16].

(2.6) Definition. The control law
2.7) u()y=—L(t, tp)x (1)

is suboptimal with degree . for the system (2.2) and the cost (2.4) if and only
if there exists a positive number p. such that the inequality

(2.8) E[J*| xJ<p 'E[J°| x,]

holds for all initial states x,0, their expectations m,. and all #,&(0,+ o)’
1,& (8, +0).

[ 54
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We note that Definition (2.6) is designed to single out a class of nons-
tationary suboptimal control problems which are in a sense ‘“‘quasistationary”,
that is, independent of choice of the time interval (¢,, ¢), provided ¢,—¢,>0.
Otherwise, it is possible to define the degree of suboptimality with respect to
some specific time interval, e.g. (9, + o) according to (5). To stress the dif-
ference, we use the term wuniform suboptimality fcr the property described in
(2.6). We also note that by the use of conditional expectation in (2.8), Defi-
nition (2.6) keeps care of the fact that the a priori knowledge of the in‘tial
state statistics R,, m, is usually unprecise. Thus, the property of suboptima-
lity (2.8) does not depend on the initial state information.

Finally, we observe that the common notion of (uniform) suboptimality
is implied by Definition (2.6) when the system in consideration and the re-
ferent system have identical open-loop structures, (4(t)=A,(t), B(t)=B,(1)).
In order to describe more explicitly the uniform suboptimality property of
the control law (2.7), we introduce the matrices M (¢, t;), N(t, t)), A, 1),
Ap(t, ty), W(t, t), Wy(t, t;) defined by :

(%—M(t, AT, )M, t)+M(, t) A, 1)+ W (L, t)=0,

A@, tp=4@)-BQ@)L(, 1),

W(t9 tf):LT(t’ tf) Qu(t)L(t’ tf)+Qx (t)9
2.9)

d - "
;;N(t, 1)+ ADp(t, )N, t;)+N(t, t) Ap(t, t)+Wp(t, t)=0,

Ap(t, t)=Ap(t)~BpLy(t, 1),
Wp(t, 1)=Li(t, 1) 0, () Lp(t, 1)+ Q. (t).

We note that our controllability and observability assumptions imply
finiteness and positive definiteness of the matrix N(¢,, ;) for all ,&(0, + c0)
and all £,&[0, #;). Indeed, it can be shown by a slight modification of argu-
ments in the proof of Kalman’s stability theorem, [6, pp. 114—116], (see also
[3, pp. 67—69], [4, pp. 724—725], and [18, pp. 687—691]), that these assump-
tions imply positive definiteness of the matrix N(¢,, ;) for all t,>z,. More-
over, the normed quadratic form of the matrix N (t,, ¢;) is uniformly bounded
from below and from above by positive definite quadratic forms that depend
on t,—1t, only.

In addition, our observability and controllability assumptions assure that
the optimal control problem for the disconnected system is meaningful in the
limit ¢;— + 0.
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We introduce also the nonnegative number

o = inf Aad [IN“H(ty, t M (2, 1)),
to, If

where inf shorthands inf . As usual, A, in (2.10) is the largest eigenva-
t, tf IEQ©, +o)
HEO, 1f)

lue of the indicated matrix. Now we formulate the following

(2.11) Theorem. The control law (2.7) is suboptimal with degree p, for the

system (2.2) and the cost (2.4) if and only if the matrix My= lim M (0, t,) is
If>+ oo

finite.
Proof We remark that

E[J+|x]=x0 M (t,, t)x,+0(ty, ),
(2.12)
E[‘]oixo]:ng(to’ 1)) X+ B (%, 2r),

where the scalar functions

y L
a(ty, tf)=f tr[M(, t)R, (1)) dt,

2.13)
I
B 1= [ tr[N(, t) R, (D]dt,
fo

are defined for all #c (0, + o) and all £ &[0, ¢,). We denote

o (ty, tr, x0)=ng(t, 1) X,
2.14)

on (s 1 x0)=ng(t0, 1) Xy,

o (t,, ty, xo) = [ (#, ty, Xg)+o (, tf)]/[(PN (1, I, X))+ B (to s tf)]~
We recall that D:finition (2.6) assumes:

(a) optimelity of the control law w, (x, t) when A.=0 and B-=0,

(b) uniform and differential controllability of the pair of matrix functions
(4p, BD)a i

(c) uniform and differential observability of the pair of matrix ‘functions
(4p. Q). |

Under these assumptions, the m=trix N(%,, 1) is positive definite and uniform-
ly bounded for all #&(0, + o) and all £,E[0, #) and for al x,40
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0<on(ty, 1y X)+B (s L),
@2.15) on(tys tr X)<en-[[ %[5
B(tO’ tf)< + o0,

for some positive number py. The function ¢(t,, ¢, X,) is well defined in
this domain. Hence, we may restate the Definition (2.6) in the following way.

The control law u (¢, x) is suboptimal with degree u (for the appropriate

ref.rent system and cost) if and only if there exists a positive mumber
such that

(2.16) posupo(t,, tr, X)<l.
to, if
xo#o

I: may be easily shown that

2.17) sup @ (t,, tr, Xo)>0.

Indeed, it follows from (c) that Q,(#)#0. Therefore LT(t, 1) Q, (1)L (2 )+
+0,(t)£0 and M(t,, t;)+#0, that is, rank [M (¢, t)]=1. Hence, there is a
vector x,70 such that xa M(ty, ) x,>0, given #,, f;, and therefore o(f,
t;, X,)>0, which proves the statement.

Hence, the inequality (2.16) never allows all nonnegative values of p&
€[0, + o0). It is evident that the control law u(t, x) is suboptimal if and
only if sup @(t, #s, X,) exists, that is, if and only if

&, L,

0,
xo7#0

(2.18) sup @ (ty, s, X)< + 0.
t, tf
x07#0

In that case, the control law is suboptimal with degree p& (0, p,l, where

@.19) b= 1/5up @ty 17, Xo)
oo
is a defined number.

It remains to prove that the right hand sides of (2.19) and (2.10) are
equivalent, and that || M, || < + oo is indeed a necessary and sufficient condi-
tion for the inequality (2.18) to be true. The first task is accomplished by
the following

Lemma. The function ¢(t,, t;, X,) —defined by (2.12—14) under the
conditions (a, b, ¢) —satisfies

(220) ?u}) (P(to’ tf’ xo) = ?ug )‘M[]vn1 (t()) tf) M(t()) tf)])
0 0
x0#0

where \,, is the largest eigenvalue of the indicated matrix.
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Proof. Let us denoter [jx,]|=p, e,=x,[l x|, o.(,, t, Xx,)=

egM(tO, t)ey, 9u(tys 1, x0)=e({N(t0, K))e,, and o(t, tf, e, ) =[Pm (%,
l, e)-p>+a(ty, 1)), (ty, 4, €) 0> +B (2, )], where legll=1, on(ty, tf,

eo)'92=(PM(to’ I, xo)’ <Pn(t0’ L eo)'Pzz(PN(to: Iy, xo)) and (P(to’ Iy, xo)ECP(to,
t, ey, |p). We observe that

0
(2.21) 5%=2p-(@m-6—¢n-a)/(¢n 0>+ B
Accordingly
(1) when Pm (to, tf’ eo)/(Pn (10’ tf’ 6’0)>OL(ZO, tf)/‘3 (toa tf)
§8>0 for all p&(0, + o0);
p

(i) when ®m (%9, Ly, €)/9, (ty, tr, e)<a(ty, tf)/B (%, tf);

g—figo for all p&(0, + o0).
?

Hence, when the inequality (i) is true

(2.22) sup  @(ty, t, €, p)=Pm(ty, 1, €)@, (t, lr, €);
pE(0, + o)
when the inequality (i) holds
(223) fup Cp(to’ L, €, p)‘_““(to’ tj‘)/‘3 (t()’ tf)'
#€(0, +w)

Thus, we have reduced the task of calculating

(2.24) SUp o (f,, ty, X))= sup sup q(ty, I, €, p)
xo#~0 Il eo |l=1 p&(0, + )

to the evaluation of the expression
(2.25)  max[a(t,, 1)/B (%, tp), | Slhplcpm(to, L, e)lo.(ty, L, €]
ey ij=

Hence,

(2.26) futp o(ty, tr, X,)=
xo’#ﬁ
max [‘Sutl; a(ty, 4)/B (%, 1), futp Om (Tos trs €0)[0s (2o, Ir, €p)].
0 0s
jleoi[=1

It is well known, [7], that

(2.27) ’Sut}? O (25 Iy, eo)/<Pn (t, Ly, eo)==

0,
leotl=1

’Sug Ay [N? (to, tf)M(tOn tf)]'
0s
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In order to prove that sup o (t,, t, X,) reduces to sup ®m (tg5 tys €6} @n (L, L, €4)
o, If

to,
XoaéO Il eo II 1

in (2.26), we shall prove that

2.28) Sup Ay [N Gy 1) M (ty, 115D (o 1)/B (s 1)

whenever there exists at least one value of ¢&[0, + o) such that R, (?)#0;
(when R, (t)=0, o(t,, t;, x,) reduces to @, (,, tr, e)/o,(t,, tr, €), and our
assertion is obvious). Indeed, let us denote R”z(t) [r,(®), r,@®), ..., 7, (t)],
where ri (1) =[r; @), ryi(®), ..., 1@, 1 (@) =r;@), G, j=1, 2,..., n), and
observe that tr[M (1, t) R, ()]=1r [Ri’z(t)M(t, )R] It follows that
M@ )R, ()= ri () M(t, t)r;(t). As R (£)#0, continuity of R, (¢)
i=1

implies that there is at least one index value i, (i=1, 2,..., n), such that
r;(t)#0 for some 1 (2, t), t,S(0, + ), ,&[0, 7). Then

2.29) rT()M(t, ) r()<M N2t 1) M, 1)) (N, 1) ().

Let I be a subset of the index set {1, 2, ..., n} such that (t)#O whenever
icl Then _ ;

(2.30) D rTOM@E 1) r (<IN, 1) M, 1] 5 1T (N, t) ri (0,

icl icl
and -
(2.31) ST M@, t)r () =tr[M(t, 1) R, (@),
icl
SrI@ONQ, t)r; ()=t [N, t) R, (1)]
Hence ©

(2.32)  r[M(, t)R (O)<hy[N71(t, t;)) M2, tp]-tr[N(t, t;) R, ()}

As (2.32) holds whenever R, ()0, it holds for all t&(t, ty), t,S(0, + ©)
1,&[0, t;). Therefore

(2.33) ftr [M(z, tf)Rv(t)]dtgff)\M[N—l(t, t)M(t, t)]-tr[N(¢, t) R, (t)]dt,

to to
holds for all 7,&(0, + o) and all £,&[0, ¢,). It is obvious that

(2.34) ffAM[N”(t, M2, t7)]-tr[N(t, tp)R, (D)} dt<

to

sup Ay [NT1 (¢, t)) M(t, tf)]fftr[N(t, 1) R, (t)]dt.

t&Co, 1) o
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Using the fact that

(2.35) sup Ay [N“1(, t)) M(2, t)]<< sup 2y [N (1, 1) M (2, )]
1, ) to, 1

and (2.34), we deduce from (2.33) that
(2‘36) a(ty, tf)/ﬁ (4, tf)<§u$ )\M[N_l(to’ tf)M(to, tf)]

holds for all #,&(0, +o0) and all ¢,&[0, #), which verifies the inequality
(2.28).

Using (2.27) and (2.28) in (2.26) we obtain (2.20) and prove the
lemma.

In order to complete the proof of the theorem, it remains to verify that
|| M, ll< + oo is indeed a necessary and sufficient condition for the inequality
(2.18) to hold. Let us consider the ratio of quadratic forms

(2~37) Pm (1o, s eO)/(Pn(tO’ Ly, eo)E‘p*(to’ ts, ey,

where || e, ||=1, t,c(t, + o) and 1,E[0, t;). It follows from (2.15) that
O (%, tr, €) is well defined and that

(2.38) 0<<d (4, ty, )< + 0
in the domain of allowable values of the arguments f,, #, e,. Therefore

(2.39) sup ¢ (t,, t;, €)=+ ©
. L
Il eofl=1

may be attained only on the boundaries of this domain, (which are nov in-
cluded in the domain itself). As ¢ (t,, t;, ¢,) is a rational function of the ent-
ries of ¢,, and ¢, belongs to a unit sphere, it is not possible to satisfy (2.39)
by an appropriate choice of e, when ¢, (0, + o) and #,C[0, t,) are fixed.

There are two boundary cases that remain to be considered: (i) t,—¢,—~0
and (i) f~> + 0.
(i) The first case divides in two subcases:

(.a) ey,c{e,:S;e,=0} and (i.b) e,£{e,:Sre,=0}.
(i.2) When e, {e,:Sye, =0}, }in}f¢(fo, tr, €,) is indefinite, we use L’Hospi-
o

1al’s rule
(2.40) lim ¢ (¢,, t, €)= lim eT—d~M(t t;)-e /eT-fl—N(t ) e
’ gtp 00 S0 Toslf °dt o> SRR o T
By inspection of the relations (2.9), we observe that

d d " :
(241) eg'[dTM(to, tf)—;;N(tO’ tf)]‘eo— ~2€€-AT(I‘0, tf)M(tO, tf)'e()"'

0 0
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—eg - LT(1,, 1) Q,(t) L (4, 1) €+

+ed N1y, t;)By(t) Qi (1) Bo (1) N (8, t))-ey,

and therefore

. : d d
(2.42) lim eg - L;;—M(to, tf)—-;t—N(to, tf)]e0= —eg - LT(t;, 1) O, (t) L(ty, 1)) - €.
0

¢,
o—>; '’ 0

It follows from (2.42) that for sufficiently small ¢, —¢,, the two quad-
ratic forms are nonnegative and satisfy

‘ d rd
2.43 eq—M(t , te)e,<<eo—N(,, tr) €.
(2.43) ° (155 1r)- ¢ 0 (to> 1) €

0 0
Using the inequality in (2.40), we obtain

(2.44) lim § (,, #, e)<I.
ta—ﬂf

(i.b) When e, {e,: Sre,=0}, we obrain by straight calculation
(2.45) im ¢ (t,, tr, e)=1.

f—)f

Hence, (2.39) is not satisfied when #,—t,. Continuity of ¢ (z,, #, e,) with
respect to ¢,, ¢, implies that (2.39) cannot be satisfied for #,—#,—0 neither.
(i) In the second case, that is, when #,— + oo, we recall that (2.15) implies
lim % (ty, tr, €)<pn. Therefore, by inspection of (2.37) one can ve-
ito>t
rify that the only possible way to satisfy (2.39) is to put
{2.46) lim @, (%, t;, €)=+
tf—)
for some ?,E[0, t;) and some e, ||e,||=1. In other words, (2.39)
holds if and only 1f (2.47) holds.
Relation (2.46) implies automatically that at least one entry of the matrix

lim M(%,, t;) for some ¢, &[0, #;) is not finite. Due to continuity of M (Z,, %)
e ]

in t,, t, this is equivalent to the requirement that the matrix lim M(z,, t)
>t oo

is not finite for all #,&[0, t;). Particularly, we can choose #,=0 in order to
conform to the statement of the theorem. We remark also that, according to
(2.20) and (2.27), relation (2.39) reduces to

2.47) fu’p o (ty, tr, X)= + oo.
s
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Hence, (2.47) holds if and only if the matrix M, has at least one entry that
is not finite. Conversely,

(2.48) sup @ (t, fr, X)< + 0
t,
Xoo;éo

if and only if || M,||< + . According to (2.13), this siatement proves that
IIM,||< + o is indeed a necessary and sufficient condition for suboptimality
of the control law u(?, x). The proof of the theorem is complete.

It follows from Definition (2.6) and Theorem (2.11) that when the open-
-loop system and the cost are specified, p, determines the maximal admissible
degree of suboptimality of a particular feedback law. In other words, the
degree of suboptimality p. of the feedback law in consideration is allowed to
be any positive number not greater than u,. The presence of the same input
noise on both the referent and the actual system does not affect the maximal
degree of suboptimality p, of the appropriate control law. Although the mat-
rix M, is identical with the matrix that guarantees a nonzero degree of subop-
timality on the infinite time interval (0, + oo) for time-invariant deterministic
systems, [5], p, is not greater than the best degree of suboptimality defined
in [5]. Indeed, according to Theorem (2.11), the convergence of the matrix
M (O, t;) with t,— + co implies the suboptimal property (2.8) on any specific
time interval (t,, t), (¢,>1,), including the time interval (0, + o). On the
other hand, by inspection of the expression in (2.10), we observe the fact
that the multiplier u that defines the suboptimality property in (2.8) for some
time interval (¢,, t;) of finite length may happen to be less than the approp-
riate multiplier for the time interval (0, + o). From relations (2.19), (2.26)
and (2.45) it follows that p,<<1 when the matrix S, is positive definite.

We note also that when the control law u, (X, ?) in (2.5) is optimal, the
appropriate differential equation in (2.9) is a Riccati equation, although we
do not use this fact explicitly.

The formula (2.10) produces the largest value of the degree of subopti-
mality, but it does not provide an explicit characterization of the effect of
interconnections on suboptimality of the control law (2.7). For this purpose
we need a condition which involves the interconnection matrix A (t, ;)=
=A@, t)—Ap(t, t). For the positive definite matrix S, and also for the
case S;=0, we obtain the following

(2.49) Theorem. The control law (2.7) is suboptimal with degree p. for
the system (2.2) and the cost (2.4) if the matrix

(2.50) F(ty, tys W=AE(ty, t)N(ty, t)+N(ty, t)Adc(ty, 1)
=Wpte, t)+uW(t,, 1)

is negative semidefinite for all t,&[0, + c©) and all #E(f,, + ©).
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Proof. Myltiplying the matrix M (z,, t;) by p, subtracting from the
matrix N(%,, t;), and using thz equations (2.9) and (2.50), we obtain

di(puM—N)+/fT-(pM~N)+(y.M—N)-ff+F=0,
tO

(2.51)
wM(t, t)— Ny, t)= —(1—u)- S,
By differentiation with respect to f,, it can be verified that

¥, .
P‘M(tO’ tf)—N(tO’ tf)=f(I)T(t’ tO)F(t’ tf; p.)(I)(t, to)dt

(2.52) ~(1-w®7(t,, 1,)S,0(, 1),

where @ (¢, 1)) is the state transition matrix defined by

(2.53) %d)(t, ty=A(@t 1) ®(@, 1),

and é)(to, t,) =1, (we note that the state transition matrix depends on I, i.e.
b=, ty; t7). It follows from (2.12) that

wE[T*] x,] — E[T° | %] = x0 [w M (8, #) - No(to, 11X,
. .
(2.54) + [rlwM(t, 1) - N 1] R, () dr,
1]
which, together with (2.52), proves the theorem. When the matrix W(z,, #;)

is positive definite for all 7,&[0, + o), {,>¢,, the largest number u* that
verifies the condition of Theorem (2.49) is determined by

pr=— S’UE} ISRV [AA]Cw (1o, L) N (25, 1)
0s

(2.55) + Ny, t) Ay, 1) -Wy(ty, 11}

If p*>0, then p* is a degree of suboptimality of (2.7), and obviously p*<Cy,,
so that w* provides an estimate of p,. This remark parallelizes a comment
on the appropriate theorem in [5].

3. Degree of suboptimality: incomplete state information. The results ob-
tained for complete state information may be easily extended to the case of
incomplete state information. To show this, let us consider the control prob-
lem for the system (2.2) with noisy observation of the output

(3.1) dx=Ayxdt+ Bpudt + Ao xdt + Boudt +dv, dy=Cpxdt+ C.xdt +dw,
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where C(t)=C,(£)+ Cc () is a g xn matrix with elements which are conti-
nuous functions of time. As usual, we assume the referent output structure

to be decentralized, that is Cp=diag{C,, C,, ..., C;} and Ce=(Cp, G, j=1,
2,...,5), where C;(¢), C;(¢) are g;xn; and ¢, xn; matrices respectively. In
B.1) wi()=[wi (1), wi (D), ..., wl (] is a g vector, the observation noise,

which is a Wiener process independent of the initial state x, and the input
noise v (7). The dimension ¢ of the vector w is determined as g=gq,+q,+ - - -
+¢,. Furthemore, Edw=0, E(dwdw™)=R,dt, and R,(t)=diag{R,, (1), R,,(t),
.-+, Ry (1)} is assumed to be positive definite on (Z,, ;) for all t;>t,. The
elements of R, (t) and R, 1(t) are assumed to be uniformly bounded and
continuous functions of time. To solve the concrol problem, we must find a
control u(#) as a functional of y(z), T€(t,, t), such that E[J] is minimized.
If there is no further restriction on the function y(t), vE(t,, t) in u(f), the
resulting LOG problem is said to be with classical information pattern, and
has a well known optimal solution, (e.g. [1, p. 289]). In decentralized control,
the only information available to the i-th controller is the observation »: ()

where yT(1)=[y{(t), y3(t), ..., »F (®)], and
(3.2) dy, = C, x;dt +dw,.

Therefore the subvectors u;(¢), (i=1, 2, ..., s), are restricted to be functio-
nals of the subvectors y,(t), T&(Z,, t), and the information pattern is a non-
classical one, [17]. Nevertheless, when A4.=0, B.=0, C.=0, the separation
theorem holds, (e.g. [1, ibid.]), and the optimal control law is defined by the
following equations
up= —L, .:CD,
(3.3)
dxp,=(Ap— By Lp) Xpdt + Ky (dy — Cp Xpdt),

where X, (t,)=m, and Ky (t, t;)=diag{K, (1, t,), K,(t, t,), ... K,(t, t)}. The
elements of the g xn matrix K, (7, #,), with ¢, xn; submatrices K;(t, t,), are
continuous functions of time. The optimal error of the state estimation is de-
noted by ;c(t):x(t)—;cD ().

When the referent system is replaced by a system (3.1) in which at least

one of the matrices A., B., C. is not identically equal to zero, an arbitrary
candidate for the centrally optimal feedback is

Ue= — Lx,
(3.4)
dx = A, xdt + K (dy - C, xdt),

where 32(50)=m0 and the matrices A, (t, ty), C,(t) are the estimates of the
matrices 4 (¢, t;), C(¢). If only the subsystems siructure is assumed to be
known, (4,=4j, C,=C)p), the decentralized feedback control is obtained for
K(t, t)=Kp(t, t,), L(t, ty)=Lp(t, t;). The error of the state estimation (3.4)

is denoted by x () =x(t)-x(2).
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The degree of suboptimality of the linear feedback (3.4) is defined for the
system with incomplete state information (3.1) and the cost (2.4) by Definition
(2.6), where (2.2) and (2.7) are replaced by (3.1) and (3.4), respectively.

The difference must be stressed between suboptimality definition for sys-
tems with complete and incomplete state information. Whether the expected
cost is conditionned upon the initial state x, or not has no importance for the
design of the control law when the system states are observed directly. When
the state information is not completely available, the precise knowledge of x,
may be used to design a more accurate filter and thus, the optimization of
the conditional and unconditional expected costs produces two different feedback
loops. It is not realistic to assume the knowledge of x, when the states of
the system are not observed directly. Therefore, the a priori statistics m,, R,
is used in the design of the state estimator, (in other words, the
referent estimator optimizes the unconditional mean square estimation error).
Still, the resulting cost of the closed-loop system depends on the realization
of the initial state, with respect 10 which the suboptimality property of the
feedback has to remain invariant. Therefore, we use the conditional expected
cost as the performance index in the definition of a suboptimal feedback with
incomplete state information, but we understand that the feedback design was
already performed at the time of performance evaluation.

In order to characterize the suboptimality of linear feedback (3.4), let
us consider the augmented state vector z7(¢)=[xT(¢), ;cT(t)] initialized by

zo=[xa, x4 —mg] and the increment of the augmented Wiener process de (f)=
= [T (), dvT (1) —awT (1) KT (1, 1,)), where cov[(de(t), de(t)]=R,(¢)dt. Introdu-
cing the augmented matrices
Re (t, to) — [ Rv (t) Rv (t) + K(t’ to) Rw (t) KT(I’ tO) J ,
R,(2) R,(0)
(3.5)
AT(t, ty)

AT(t; 1,, tf)=[LT(t’ ) BT()

AT(1, 1) = AT, 1)~ CT (@)K (1, 1) +CL () KT (1, ro)]
AT, 1)+ LT (1, 1) BT () - CT () KT (1, 1) ’

we obtain a compact notation of the system (3.1) with the feedback loop (3.4)

(3.6) dz = Azdt + de,

where z(f)=2z,. In order to describe the referent system when K=K, A=A,

C=C,, we denote by e,(t), Rp(5; t,), Ap(t; ty, t;) the augmented Wiener

process e(?), its incremental covariance R, (#; f) and the system state matrix

A(t; t,, t7). In that case the state equation of the referent system is

3.7 dz= Ay, zdt +dey,
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where z(,)=2z,. We need two more augmented matrices

O t )z[ 0.(1)+L7(1, 1) 0. ()L, t,) ~LT(@1, 1) Q. (1)L, tf)]
B B 2R AY NOY AP L@, 1) 0, ()L, ) |
=[S, 0

in order to obtain the same compact notation for the performance index (2.4)
of the closed-loop system (3.6)

- i
3.9 J 2T (tf) Q,z(t,)+f ZT@)Q(, t)z(r)dr.

We denote by QD(t, t;) the matrix Q(t, f;) in the referent case L(1, t))=L,
(t, 17). As before, we use the symbols J® and J* to indicate ihe costs of the
referent system (K=K, L=L,, A=A4,, A,=4,, C,=C,) and an arbitrary
system (K#Kp, L#L,, A#A,, A#A,, C,#£C,), respectively.

When the filter gain is restricted to K=K,, the extension of Theorem
(2.11) to the case of incomplete state information is straightforward. We int-
roduce the augmented matrices M (1, t; t) and N, t;; 1) analogous to
M(t, t;) and N(t, t;) in (2.9):

gt«fl(t, ts 1)+ AT 1y, )M, 1 1)+ Mt 1y 1) At 4, 1))
+O(t =0, M, 15 1,)= 0,
g—f\/(t, i )+ AD( by, tINQ, 15 1)+ N1, 15 1) Ap(t: 1y, 1))+
(3.10)

+0p(t t)=0, N, 15 1)~ Q.

To ensure that the control part of the problem is meaningful in the limit
t,— + oo for the referent (disconnected) system, we assume, as before, that the
pairs of matrix functions (4,, Bp), (4, Qi/z) are uniformly controllable and
observable respectively. To be sure that the estimation part of the problem
makes sense in the limit, we must suppose uniform observability and uniform
controllability of the pairs of matrix functions (4, Cp) and (4, Ry?), respectively.
To guarantee positive definiteness and boundedness of the matrix N, we must
assume in addition: differential controllability of (4,,, Bp), differential observability
of (4p, le), and uniform and differential observability of the pair of matrix

functions (4,— K, Cp, ,1,/2LD). The matrix ]\7(10, l;; 1) being now nonsin-
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gular for all 1,&[0, + o) and all ¢,=(¢,, + o), we introduce the nonnegati-
ve number

3.11) bo = nf Mt (N1, 15 1) M (o, 153 1))

in order to state the following

(3.12) Theorem. The linear feedback (3.4) is suboptimal with degree
w<w, for the system (3.1) and the cost (2.4) if and only if the matrix M, =

lim 1\71(0, ty; 0) is finite.
Ifs 0

Proof. Tt is obvious that

E[J+| x,]=z0 M(ty, t5; ty) 2o+ (tys 1)),
(3.13)

E[JOx)=20 N(ty, 155 1)z +B (s, 1),

where zg:[xg, xg—moT], and the scalar functions o?(to, 1), 6(’0, t;) are
defined by

- 4 ~
a(ty, 1= [r[M(, 1y 1) R (55 to)]dt

(3.14)

_ oo
Bty t)=[tr[N(t, 15 1) Rp (11 1)]dr.

to

According to Definition (2.6), a necessary condition for suboptimality of the
linear feedback (3.4) is that the inequality (2.8) holds for all x;, and all m,,
that is, for all augmented state vectors z,. Once this fact is recognized, the
same arguments as in Theorem (2.11) are used to complete the proof.

As for the case of complete state information, the matrix inversion in
(3.11) requires only the inversion of submatrices of the size not greater than

max n; x maxn,, (=1, 2,..., ), due to the fact that the augmented matrix N
of the referent system has zero off diagonal # xn submatrices.

The role of the initial state expectation m, in the suboptimality definition
(2.6) needs somz comment. In the case of complete state infomation, the re-
quirement fur the incquality (2.8) to be verified for all m, is redundant. It
is not so in the case of incomplete state information. The omission of m, in
(2.6) should produce a less restrictive version of Theorem (3.12), as it can
be easily verified along the lines of the proof. But it seems that this improve-
ment does not compensate the loss of symmetry with complete state informa-
tion case and the fact that the precise knowledge of m, is hardly to be ex-
pected in practice. To provide an explicit characterization of the effect of
interconnections on suboptimality of the linear feedback (3.4) for the case S,=0,
we state an analogon to Theorem (2.49).
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(3.15) Theorem. The linear feedback (3.4) is suboptimal with degree u
for the system (3.1) and the cost (2.4) if the matrix

F(t, t; W=AL(y ty, )Nty 15 1)+
(3.16)
N(to, tf; tO)AC(to; tos t/’)“QD(tO: tf)'{'ELQ(toa tf)

is negative semidefinite for all t,&[0, + o) and all t,&(t,, + o).

The matrix Ao (f; #,, t,) in (3.16) is defined as Ao (8 1y, t,)=A(t; 1,,
)= Ap(t; 1, t,). When Q(t,, 1,) is positive definite for all 7,&[0, + oo) and
all 1,&(t,, + o), the largest number y?* that verifies the condition of Theo-
rem (3.15) is determined by

Fz*: - 5112 7‘M{Q_l(tm t;) [Zg(to; to: tf)ﬁ(to, t/'; to)
0
(3.17)

+N(y, 15 1) Aclty; 1y, 1) —0p (8, 1]}

4. Conclusion. The concept of uniform suboptimality is introduced in
order to characterize the linear feedback loop with and without complete in-
formation about the state of linear time-varying systems corrupted by input
and output noise, when the input, output, state-feedback and state-intercon-
nection structures are perturbed. In order to provide computational tests, ne-
cessary and various sufficient conditions for uniform suboptimality of the li-
near feedback are derived.
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