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A NOTE ON UNITS AND DIVISORS OF ZERO IN GROUP RINGS
N. J. Groenewald, H. J. Schutte

In this note we show X, g is a unit in the group ring RG if and only
if there exists % @,4 in RG such that T o f,—1=1 and Xo,pB, is nilpotent
whenever ghs#1 where R is a ring such that if «B=0 then Ba=0; «, BER,
and where G is a two unique products group. We also show that if R is a
ring with no idempotents =£0, 1 and whose nilpotent elements form an ideal
N, then J(RG)= NG where J(RG) is the Jacobson radical of the group ring
RG, G an tu.p. group.

In the last section we give a necessary and sufficient condition for an
element X a;s;, o, R, 5;&8 to be a divisor of zero in the semigroup ring RS
where R is a ring such that if «3=0 then Ba=0; «, B& R, and where S is
a unique product semigroup.

1. Units. A group G is called a two unique products group if given any
two nonempty finite subsets 4 and B of G with |A4|+|B|>2, there exist at
least two distinct elements x and y of G that have unique representations in
the form x=ab, y=cd with a, c€ A and b, d&B. All ordered groups are t.u.p.
groups (see [4]). In [2] results about the units of the group ring RG, where R
is a ring with identity and G an ordered group, were obtained. In this section
we extend these results to the group ring RG where G is any t.u.p. group and
suitable restrictions on R. Let U(RG) denote the units of RG.

Lemma 1.1 (¢f [3], Lemma 2.7). Let R be a ring without nonzero nil-
potent elements and p, q<RG where G is a tu.p group. If pg=1, where
p=Xao,g and q=20,h, then o, By=0 when gh#1.

Proposition 1.2. Let R be any ring with identity and let G be a t.u.p.
group. Then the following are equivalent

() URG)={Z o, g| there exists B, in R with Do Be—1~1 and
%y B, =0 whenever gh+1}

(ii) R has no non-zero nilpotent elements.

Proof. That (i) implies (ii) follows from the fact that if y&R is nil-
potent, then 1+v, is a unit in RG. Lemma 1.1 states the converse. []
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Lemma 1.3. Suppose R is a ring such that if x, yER and xy=0 then
yx=0. Then the set of nilpotent elements of R forms an ideal.

Proof. [1], Lemma 2. [

Theorem 1.4. Suppose that R satisfies the hypothesis of Lemma 1.3
and let G be a tu.p. group. Then Ta,g is a unit in RG if and only if there
exists B, h in RG such that Zo,Bg—1=1 and B, is nilpotent whenever gh1.

Proof. In [2] this theorem is proved for the case where G is an orde-
red group. The proof of Theorem 1.3 in [2] is solely dependent on the validity
of Proposition 1.2 and Lemma 1.3 for RG. Since this is the case, now, the
proof of Theorem 1.4 js the same as when G is ordered. [J

Corollary 1.5. Let R be a ring with identity satisfying hypothesis of
Lemma 1.3 with no idempotents 0, 1. If G is a tu.p. group, then X« g is a
unit in RG if and only if for some g, ag is a unit and all other o, s are nilpotent.

Proof. The proof is the same as that of Corollary 1.4. in [2]. [

Corollary 1.6 (cf. [3], Theorem 2.1). Let R be a ring with no nilpotent
elements #0 and no idempotents #0, 1. Then the only units in RG are of the
form ug where u is a unit of R and g is in G.

Proof. Since R has no nilpotent elements %0 the hypothesis of Lemma
1.3 is satisfied. The result now follows from Corollary 1.5. [

2. Applications. Let J(RG) denote the Jacobson radical of R.

Propostion 2.1. Suppose R is a ring with no idempotents #0, 1 and
whose nilpotent elements form an ideal N. Then J(RG)=NG where G is an

tu.p. group

Proof. This Proposition follows Corollary 1.5 as Proposition 2.1 does
in [2). O

Proposition 2.2. Let R and S be local rings with no non-zero nil-
potent elements. Let G be a tu.p. group. If 6:RG — SG is a homomorphism
then o (R)CS.

Proof. Again the proof is based on Corollary 1.5 in a similar way as
that of Proposition 2.2 in [2]. [

Corollary 2.3. Let R, S be local rings with 1, and with no non-zero
nilpotent elements. Let G be a tu.p. group. If c:RG — SG is an isomorphism,
then o (R)=S.

3. Divisors of zero in certain semigroup rings. A semigroup S is called
a unique product semigroup if, when 4 and B are non-empty finite subsets of
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S, then there always exists at least one xS which has a unique representation
in the form x=ab with ac4 and b& B. Clearly a t.u.p. group is an u.p. group.

Let S be a unique product semigroup and let R be a ring such that if
«, BER and «f =0 then Ba=0.

Lemma 3.1. If a= > 85 &R, 5;ES8, and b= > Bt BER, y,ES
i=1 j=1
are two non-zero elements of the semigroup ring RS such that ab=0, n being
chosen as small as possible and compatible with ab=0, then n—1.

Proof. If n=1 there is nothing to prove. Suppose n>1. For some }
and ¢, 1<{p<m, 1<g<n, we have that. Spt,Fs;t; for i%p or g=4j. Since
ab=0, it follows that a,B,=0. Without any loss in generality, we may assume
p=m and g=n. By assumption B,a,=0.

Now a(ba,)=(ab) @, =0, where ba,, =B, o0, t, + B, 00, t,+ « - - +B,_ o, 1

m-n—1-
By choice of & we must have b«,=0. Thus Boy=u,8=0,j=1,2, ..., n
Suppose that, after a suitable re-arrangement of terms, «; Bi=0,i=d+1,..., 6 m
Jj=1, 2, ..., n, and that for each i such that 1<{i<d we have o; 3;7#0 for

some j. Then
(28, + 2,85+ - - +°‘;isd)‘(ﬁlt1+62t2+ Bt
=(oy S+ oSyt o Syt s+, 8,) (B LB+ + B,
=ab=0.

From the unique product property of S we may infer o, B3, =0 for some
p and g, 1<p<d, 1<g<n, and again, without any loss in generality, we
assume p =d and g =n. Hence o, 8, =0, and consequently a (ba,) = (ab) o, = 0, where

boy=8, agt + B0yt 4+ e +Bay ogt,_ F#0.

This contradicts the choice of . Hence n=1. []

Corollary 3.2. If 04pE RS is a divisor of zero, then there exists a
non-zero element r& R such that pr=0.

Remark. The class of rings for which the condition «f=0 implies
Ba=0 holds, includes the class of all rings without non-zero nilpotent elements.

From this remark, it follows that Corollary 3.2 is an extension of [3],
Theorem 2.3.

Theorem 3.3. The element a= 3 «;5; of RS, ,,ER, s;=S, is a zero
i=1
divisor if and only if the ideal (0: A)+#(0) where A is the ideal (otys oy - .., 0,) in R.

Proof. If a is a divisor of zero in RS, then, by Corollary 3.2, an
element BC R, P70, exists such that o; 3 =Bo;=0,i=1, ..., m. Let rEA. Then

m nj
= z [Z tyoury+ b+ r+c o)
i=1 j=1
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with ¢, ry, ¢, r,ER and c; an integer. Since (¢;0;)B=0 it follows from our
assumption on R that B(#;«;)=0. Similarly, ¢,«,=0. Hence 8r=rf =0, and
consequently (0:A)s=(0).

Conversely, if (0:A4)7(0) there exists an element B& R, B0, such that

a;B=8a;=0, i=1, ... , m. This implies that (3 «;s;)-Bs,=0for anys, &S.0J
i=1

Corollary 3.4. If R is a commutative Noetherian ring and S a unique

m

product semigroup, then > a;$;, ©;ER, 5;CS, is a zero divisor in RS if and
=1

only if A=(a;, o ... , @,) IS @ zero divisor ideal of R.

Proof. We need only remark that if 4 is a zero divisor ideal in R then
it is contained in a maximal zero divisor ideal in R and hence (0:A4)4(0).
(5}, Corollary 1, p. 215.) O

The following example shows that R need not be Noectherian. Let V' be
a rank 1 non-discrete valuation ring and let I be any non-zero principal ideal.
The ring R=V/I is not Noetherian. Let I/CJ and J be finitely generated.

Then (0:J)5£(0) in R and J is a zero divisor ideal of R.

Remark. An immediate consequence of the above theorem is that if R
is an entire ring (i.e. a ring without non-zero zero divisors) and S is a unique
product semigroup, then RS is an entire ring (cf. {4], p. 111).
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